2 resultados para Matter and form
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Pesiqta Rabbati is a unique homiletic midrash that follows the liturgical calendar in its presentation of homilies for festivals and special Sabbaths. This article attempts to utilize Pesiqta Rabbati in order to present a global theory of the literary production of rabbinic/homiletic literature. In respect to Pesiqta Rabbati it explores such areas as dating, textual witnesses, integrative apocalyptic meta-narrative, describing and mapping the structure of the text, internal and external constraints that impacted upon the text, text linguistic analysis, form-analysis: problems in the texts and linguistic gap-filling, transmission of text, strict formalization of a homiletic unit, deconstructing and reconstructing homiletic midrashim based upon form-analytic units of the homily, Neusner’s documentary hypothesis, surface structures of the homiletic unit, and textual variants. The suggested methodology may assist scholars in their production of editions of midrashic works by eliminating superfluous material and in their decoding and defining of ancient texts.
Resumo:
Utilization of biogas can provide a source of renewable energy in both heat and power generation. Combustion of biogas in land-based gas turbines for power generation is a promising approach to reducing greenhouse gases and US dependence on foreign-source fossil fuels. Biogas is a byproduct from the decomposition of organic matter and consists primarily of CH4 and large amounts of CO2. The focus of this research was to design a combustion device and investigate the effects of increasing levels of CO2 addition to the combustion of pure CH4 with air. Using an atmospheric-pressure, swirl-stabilized dump combustor, emissions data and flame stability limitations were measured and analyzed. In particular, CO2, CO, and NOx emissions were the main focus of the combustion products. Additionally, the occurrence of lean blowout and combustion pressure oscillations, which impose significant limitations in operation ranges for actual gas turbines, was observed. Preliminary kinetic and equilibrium modeling was performed using Cantera and CEA for the CH4/CO2/Air combustion systems to analyze the effect of CO2 upon adiabatic flame temperature and emission levels. The numerical and experimental results show similar dependence of emissions on equivalence ratio, CO2 addition, inlet air temperature, and combustor residence time. (C) 2014 Elsevier Ltd. All rights reserved.