2 resultados para Mathematical transformations

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of the parallel vector implementation of the one- and two-dimensional orthogonal transforms is evaluated. The orthogonal transforms are computed using actual or modified fast Fourier transform (FFT) kernels. The factors considered in comparing the speed-up of these vectorized digital signal processing algorithms are discussed and it is shown that the traditional way of comparing th execution speed of digital signal processing algorithms by the ratios of the number of multiplications and additions is no longer effective for vector implementation; the structure of the algorithm must also be considered as a factor when comparing the execution speed of vectorized digital signal processing algorithms. Simulation results on the Cray X/MP with the following orthogonal transforms are presented: discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh transform (DWHT), and discrete Hadamard transform (DHDT). A comparison between the DHT and the fast Hartley transform is also included.(34 refs)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously observed that mental manipulation of the pitch level or temporal organization of melodies results in functional activation in the human intraparietal sulcus (IPS), a region also associated with visuospatial transformation and numerical calculation. Two outstanding questions about these musical transformations are whether pitch and time depend on separate or common processing in IPS, and whether IPS recruitment in melodic tasks varies depending upon the degree of transformation required (as it does in mental rotation). In the present study we sought to answer these questions by applying functional magnetic resonance imaging while musicians performed closely matched mental transposition (pitch transformation) and melody reversal (temporal transformation) tasks. A voxel-wise conjunction analysis showed that in individual subjects, both tasks activated overlapping regions in bilateral IPS, suggesting that a common neural substrate subserves both types of mental transformation. Varying the magnitude of mental pitch transposition resulted in variation of IPS BOLD signal in correlation with the musical key-distance of the transposition, but not with the pitch distance, indicating that the cognitive metric relevant for this type of operation is an abstract one, well described by music-theoretic concepts. These findings support a general role for the IPS in systematically transforming auditory stimulus representations in a nonspatial context. (C) 2013 Elsevier Inc. All rights reserved.