3 resultados para Macaca mulatta
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Meta-cognition, or "thinking about thinking," has been studied extensively in humans, but very little is known about the process in animals. Although great apes and rhesus macaques (Macaca mulatta) have demonstrated multiple apparently meta-cognitive abilities, other species have either been largely ignored or failed to convincingly display meta-cognitive traits. Recent work by Marsh, however, raised the possibility that some species may possess rudimentary or partial forms of meta-cognition. This thesis sought to further investigate this possibility by running multiple comparative experiments. The goal of the first study was to examine whether lion-tailed macaques, a species that may have a rudimentary form of meta-cognition, are able to use an uncertainty response adaptively, and if so, whether they could use the response flexibly when the stimuli for which the subjects should be uncertain changed. The macaques' acquisition of the initial discrimination task is ongoing, and as such there were not yet data to support a conclusion either way. In the second study, tufted capuchins were required to locate a food reward hidden beneath inverted cups that sat on a Plexiglas tray. In some conditions the capuchins were shown where the food was hidden, in others they could infer its location, and in yet others they were not given information about the location of the food. On all trials, however, capuchins could optionally seek additional information by looking up through the Plexiglas into the cups. In general, capuchins did this less often when they were shown the food reward, but not when they could infer the reward's location. These data suggest capuchins only meta-cognitively control their information seeking in some conditions, and thus, add support to the potential for a rudimentary form of meta-cognition. In convergence with other studies, these results may represent early models for rudimentary meta-cognition, although viable alternative explanations still remain.
Resumo:
Pictorial representations of three-dimensional objects are often used to investigate animal cognitive abilities; however, investigators rarely evaluate whether the animals conceptualize the two-dimensional image as the object it is intended to represent. We tested for picture recognition in lion-tailed macaques by presenting five monkeys with digitized images of familiar foods on a touch screen. Monkeys viewed images of two different foods and learned that they would receive a piece of the one they touched first. After demonstrating that they would reliably select images of their preferred foods on one set of foods, animals were transferred to images of a second set of familiar foods. We assumed that if the monkeys recognized the images, they would spontaneously select images of their preferred foods on the second set of foods. Three monkeys selected images of their preferred foods significantly more often than chance on their first transfer session. In an additional test of the monkeys' picture recognition abilities, animals were presented with pairs of food images containing a medium-preference food paired with either a high-preference food or a low-preference food. The same three monkeys selected the medium-preference foods significantly more often when they were paired with low-preference foods and significantly less often when those same foods were paired with high-preference foods. Our novel design provided convincing evidence that macaques recognized the content of two-dimensional images on a touch screen. Results also suggested that the animals understood the connection between the two-dimensional images and the three-dimensional objects they represented.
Resumo:
Numerous studies have shown that animals have a sense of quantity and can distinguish between relative amounts. The concepts of relative numerousness, estimation, and subitizing are well established in species as diverse as chimpanzees and salamanders. Mobile animals have practical use for an understanding of number in common situations such as predation, mating, and competition. However, the ability to identify discrete quantities has only been firmly established in humans. The purpose of this study was to test for such “absolute numerousness” judgments in three lion-tailed macaques (Macaca silenus), a non-human primate. The three macaques tested had previously been trained on a computerized matchto- sample (MTS) task using geometric shapes. In this study, they were introduced to a MTS task containing a numerical cue, which required the monkeys to match stimuli containing either one or two items for rewards. If monkeys were successful at the initial matching task, they were tested with stimuli in which the position of the items and then the surface area of the items was controlled. If the monkeys could match successfully without using these non-numerical cues, they would demonstrate the capability to make absolute numerousness judgments. None of the monkeys matched successfully using the numerical cue, so no evidence of absolute numerosity was found. Each macaque progressed through the experiment in an individualized manner, attempting a variety of strategies to obtain rewards. These included side preferences and an alternating-side strategy that were unrelated to the numerical cues in the stimuli. When it became clear that the monkeys were not matching based on a stimulus-based cue, they were tested again on matching geometric shapes. All three macaques stopped using their alternate strategies and were able to match shapes successfully, demonstrating that they were still capable of completing the matching task. The data suggest that the monkeys could not transfer this ability to the numerical stimuli. This indicates that the macaques lack a sense of exact quantity, or that they could not recognize the numerical cues in the stimuli as being relevant to the task.