17 resultados para MP2

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature of vibrational anharmonicity has been examined for the case of small water clusters using second-order vibrational perturbation theory (VPT2) applied on second-order Møller–Plesset perturbation theory (MP2) potential energy surfaces. Using a training set of 16 water clusters (H2O)n=2–6,8,9 with a total of 723 vibrational modes, we determined scaling factors that map the harmonic frequencies onto anharmonic ones. The intermolecular modes were found to be substantially more anharmonic than intramolecular bending and stretching modes. Due to the varying levels of anharmonicity of the intermolecular and intramolecular modes, different frequency scaling factors for each region were necessary to achieve the highest accuracy. Furthermore, new scaling factors for zero-point vibrational energies (ZPVE) and vibrational corrections to the enthalpy (ΔHvib) and the entropy (Svib) have been determined. All the scaling factors reported in this study are different from previous works in that they are intended for hydrogen-bonded systems, while others were built using experimental frequencies of covalently bonded systems. An application of our scaling factors to the vibrational frequencies of water dimer and thermodynamic functions of 11 larger water clusters highlights the importance of anharmonic effects in hydrogen-bonded systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For (H2O)n where n = 1–10, we used a scheme combining molecular dynamics sampling with high level ab initio calculations to locate the global and many low lying local minima for each cluster. For each isomer, we extrapolated the RI-MP2 energies to their complete basis set limit, included a CCSD(T) correction using a smaller basis set and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled and unscaled harmonic vibrational frequencies. The vibrational scaling factors were determined specifically for water clusters by comparing harmonic frequencies with VPT2 fundamental frequencies. We find the CCSD(T) correction to the RI-MP2 binding energy to be small (<1%) but still important in determining accurate conformational energies. Anharmonic corrections are found to be non-negligble; they do not alter the energetic ordering of isomers, but they do lower the free energies of formation of the water clusters by as much as 4 kcal/mol at 298.15 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient mixed molecular dynamics/quantum mechanics model has been applied to the water cluster system. The use of the MP2 method and correlation consistent basis sets, with appropriate correction for BSSE, allows for the accurate calculation of electronic and free energies for the formation of clusters of 2−10 water molecules. This approach reveals new low energy conformers for (H2O)n=7,9,10. The water heptamer conformers comprise five different structural motifs ranging from a three-dimensional prism to a quasi-planar book structure. A prism-like structure is favored energetically at low temperatures, but a chair-like structure is the global Gibbs free energy minimum past 200 K. The water nonamers exhibit less complexity with all the low energy structures shaped like a prism. The decamer has 30 conformers that are within 2 kcal/mol of the Gibbs free energy minimum structure at 298 K. These structures are categorized into four conformer classes, and a pentagonal prism is the most stable structure from 0 to 320 K. Results can be used as benchmark values for empirical water models and density functionals, and the method can be applied to larger water clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gaussian-2, Gaussian-3, complete basis set- (CBS-) QB3, and CBS-APNO methods have been used to calculate ΔH° and ΔG° values for neutral clusters of water, (H2O)n, where n = 2−6. The structures are similar to those determined from experiment and from previous high-level calculations. The thermodynamic calculations by the G2, G3, and CBS-APNO methods compare well against the estimated MP2(CBS) limit. The cyclic pentamer and hexamer structures release the most heat per hydrogen bond formed of any of the clusters. While the cage and prism forms of the hexamer are the lowest energy structures at very low temperatures, as temperature is increased the cyclic structure is favored. The free energies of cluster formation at different temperatures reveal interesting insights, the most striking being that the cyclic trimer, cyclic tetramer, and cyclic pentamer, like the dimer, should be detectable in the lower troposphere. We predict water dimer concentrations of 9 × 1014 molecules/cm3, water trimer concentrations of 2.6 × 1012 molecules/cm3, tetramer concentrations of approximately 5.8 × 1011 molecules/cm3, and pentamer concentrations of approximately 3.5 × 1010 molecules/cm3 in saturated air at 298 K. These results have important implications for understanding the gas-phase chemistry of the lower troposphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calculations were run on the methylated DNA base pairs adenine:thymine and adenine:difluorotoluene to further investigate the hydrogen-bonding properties of difluorotoluene (F). Geometries were optimized using hybrid density functional theory. Single-point calculations at the MP2(full) level were performed to obtain more rigorous energies. The functional counterpoise method was used to correct for the basis set superposition error (BSSE), and the interaction energies were also corrected for fragment relaxation. These corrections brought the B3LYP and MP2 interaction energies into excellent agreement. In the gas phase, the Gibbs free energies calculated at the B3LYP and MP2 levels of theory predict that A and T will spontaneously form an A:T pair while A:F spontaneously dissociates into A and F. Solvation effects on the pairing of the bases were explored using implicit solvent models for water and chloroform. In aqueous solution, both A:T and A:F are predicted to dissociate into their component monomers. Semiempirical calculations were performed on small sections of B-form DNA containing the two pairs, and the results provide support for the concept that base stacking is more important than hydrogen bonding for the stability of the A:F pair within a DNA helix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past 7 years, the enediyne anticancer antibiotics have been widely studied due to their DNA cleaving ability. The focus of these antibiotics, represented by kedarcidin chromophore, neocarzinostatin chromophore, calicheamicin, esperamicin A, and dynemicin A, is on the enediyne moiety contained within each of these antibiotics. In its inactive form, the moiety is benign to its environment. Upon suitable activation, the system undergoes a Bergman cycloaromatization proceeding through a 1,4-dehydrobenzene diradical intermediate. It is this diradical intermediate that is thought to cleave double-stranded dna through hydrogen atom abstraction. Semiempirical, semiempiricalci, Hartree–Fock ab initio, and mp2 electron correlation methods have been used to investigate the inactive hex-3-ene-1,5-diyne reactant, the 1,4-dehydrobenzene diradical, and a transition state structure of the Bergman reaction. Geometries calculated with different basis sets and by semiempirical methods have been used for single-point calculations using electron correlation methods. These results are compared with the best experimental and theoretical results reported in the literature. Implications of these results for computational studies of the enediyne anticancer antibiotics are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate anharmonic experimental vibrational frequencies for water clusters consisting of 2−5 water molecules have been predicted on the basis of comparing different methods with MP2/aug-cc-pVTZ calculated and experimental anharmonic frequencies. The combination of using HF/6-31G* scaled frequencies for intramolecular modes and anharmonic frequencies for intermolecular modes gives excellent agreement with experiment for the water dimer and trimer and are as good as the expensive anharmonic MP2 calculations. The water trimer, the cyclic Ci and S4 tetramers, and the cyclic pentamer all have unique peaks in the infrared spectrum between 500 and 800 cm-1 and between 3400 and 3700 cm-1. Under the right experimental conditions these different clusters can be uniquely identified using high-resolution IR spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gaussian-3 and MP2/aug-cc-pVnZ methods have been used to calculate geometries and thermochemistry of CS2(H2O)n, where n = 1–4. An extensive molecular dynamics search followed by optimization using these two methods located two dimers, six trimers, six tetramers, and two pentamers. The MP2/aug-cc-pVDZ structure matched best with the experimental result for the CS2(H2O) dimer, showing that diffuse functions are necessary to model the interactions found in this complex. For larger CS2(H2O)n clusters, the MP2/aug-cc-pVDZ minima are significantly different from the MP2(full)/6-31G* structures, revealing that the G3 model chemistry is not suitable for investigation of sulfur containing van der Waals complexes. Based on the MP2/aug-cc-pVTZ free energies, the concentration of saturated water in the atmosphere and the average amount of CS2 in the atmosphere, the concentrations of these clusters are predicted to be on the order of 105CS2(H2O) clusters∙cm−3 and 102 CS2(H2O)2 clusters∙cm−3 at 298.15 K. The MP2/aug-cc-pVDZ scaled harmonic and anharmonic frequencies of the most abundant dimer cluster at 298 K are presented, along with the MP2/aug-cc-pVDZ scaled harmonic frequencies for the CS2(H2O)n structures predicted to be present in a low-temperature molecular beam experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature of vibrational anharmonicity has been examined for the case of small water clusters using second-order vibrational perturbation theory (VPT2) applied on second-order Møller–Plesset perturbation theory (MP2) potential energy surfaces. Using a training set of 16 water clusters (H2O)n=2–6,8,9 with a total of 723 vibrational modes, we determined scaling factors that map the harmonic frequencies onto anharmonic ones. The intermolecular modes were found to be substantially more anharmonic than intramolecular bending and stretching modes. Due to the varying levels of anharmonicity of the intermolecular and intramolecular modes, different frequency scaling factors for each region were necessary to achieve the highest accuracy. Furthermore, new scaling factors for zero-point vibrational energies (ZPVE) and vibrational corrections to the enthalpy (ΔHvib) and the entropy (Svib) have been determined. All the scaling factors reported in this study are different from previous works in that they are intended for hydrogen-bonded systems, while others were built using experimental frequencies of covalently bonded systems. An application of our scaling factors to the vibrational frequencies of water dimer and thermodynamic functions of 11 larger water clusters highlights the importance of anharmonic effects in hydrogen-bonded systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbonyl sulfide is the most abundant sulfur gas in the atmosphere. We have used MP2 and CCSD(T) theory to study the structures and thermochemistries of carbonyl sulfide interacting with one to four water molecules. We have completed an extensive search for clusters of OCS(H2O)n, where n = 1−4. We located three dimers, two trimers, five tetramers, and four pentamers with the MP2/aug-cc-pVDZ method. In each of the complexes with two or more waters, OCS preferentially interacts with low-energy water clusters. Our results match current theoretical and experimental literature, showing correlation with available geometries and frequencies for the OCS(H2O) species. The CCSD(T)/aug-cc-pVTZ thermochemical values combined with the average amount of OCS and the saturated concentration of H2O in the troposphere, lead to the prediction of 106 OCS(H2O) clusters·cm−3 and 102 OCS(H2O)2 clusters·cm−3 at 298 K. We predict the structures of OCS(H2O)n, n = 1−4 that should predominate in a low-temperature molecular beam and identify specific infrared vibrations that can be used to identify these different clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the binary nucleation of sulfuric acid in aerosol formation and its implications for global warming is one of the fundamental unsettled questions in atmospheric chemistry. We have investigated the thermodynamics of sulfuric acid hydration using ab initio quantum mechanical methods. For H2SO4(H2O)n where n = 1–6, we used a scheme combining molecular dynamics configurational sampling with high-level ab initio calculations to locate the global and many low lying local minima for each cluster size. For each isomer, we extrapolated the Møller–Plesset perturbation theory (MP2) energies to their complete basis set (CBS) limit and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled harmonic vibrational frequencies. We found that ionic pair (HSO4–·H3O+)(H2O)n−1 clusters are competitive with the neutral (H2SO4)(H2O)n clusters for n ≥ 3 and are more stable than neutral clusters for n ≥ 4 depending on the temperature. The Boltzmann averaged Gibbs free energies for the formation of H2SO4(H2O)n clusters are favorable in colder regions of the troposphere (T = 216.65–273.15 K) for n = 1–6, but the formation of clusters with n ≥ 5 is not favorable at higher (T > 273.15 K) temperatures. Our results suggest the critical cluster of a binary H2SO4–H2O system must contain more than one H2SO4 and are in concert with recent findings(1) that the role of binary nucleation is small at ambient conditions, but significant at colder regions of the troposphere. Overall, the results support the idea that binary nucleation of sulfuric acid and water cannot account for nucleation of sulfuric acid in the lower troposphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For (H2O)n where n = 1–10, we used a scheme combining molecular dynamics sampling with high level ab initio calculations to locate the global and many low lying local minima for each cluster. For each isomer, we extrapolated the RI-MP2 energies to their complete basis set limit, included a CCSD(T) correction using a smaller basis set and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled and unscaled harmonic vibrational frequencies. The vibrational scaling factors were determined specifically for water clusters by comparing harmonic frequencies with VPT2 fundamental frequencies. We find the CCSD(T) correction to the RI-MP2 binding energy to be small (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mixed molecular dynamics/quantum mechanics model has been applied to the ammonium/water clustering system. The use of the high level MP2 calculation method and correlated basis sets, such as aug-cc-pVDZ and aug-cc-pVTZ, lends confidence in the accuracy of the extrapolated energies. These calculations provide electronic and free energies for the formation of clusters of ammonium and 1−10 water molecules at two different temperatures. Structures and thermodynamic values are in good agreement with previous experimental and theoretical results. The estimated concentration of these clusters in the troposphere was calculated using atmospheric amounts of ammonium and water. Results show the favorability of forming these clusters and implications for ion-induced nucleation in the atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient mixed molecular dynamics/quantum mechanics model has been applied to the water cluster system. The use of the MP2 method and correlation consistent basis sets, with appropriate correction for BSSE, allows for the accurate calculation of electronic and free energies for the formation of clusters of 2−10 water molecules. This approach reveals new low energy conformers for (H2O)n=7,9,10. The water heptamer conformers comprise five different structural motifs ranging from a three-dimensional prism to a quasi-planar book structure. A prism-like structure is favored energetically at low temperatures, but a chair-like structure is the global Gibbs free energy minimum past 200 K. The water nonamers exhibit less complexity with all the low energy structures shaped like a prism. The decamer has 30 conformers that are within 2 kcal/mol of the Gibbs free energy minimum structure at 298 K. These structures are categorized into four conformer classes, and a pentagonal prism is the most stable structure from 0 to 320 K. Results can be used as benchmark values for empirical water models and density functionals, and the method can be applied to larger water clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the binary nucleation of sulfuric acid in aerosol formation and its implications for global warming is one of the fundamental unsettled questions in atmospheric chemistry. We have investigated the thermodynamics of sulfuric acid hydration using ab initio quantum mechanical methods. For H2SO4(H2O)n where n = 1–6, we used a scheme combining molecular dynamics configurational sampling with high-level ab initio calculations to locate the global and many low lying local minima for each cluster size. For each isomer, we extrapolated the Møller–Plesset perturbation theory (MP2) energies to their complete basis set (CBS) limit and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled harmonic vibrational frequencies. We found that ionic pair (HSO4–·H3O+)(H2O)n−1clusters are competitive with the neutral (H2SO4)(H2O)n clusters for n ≥ 3 and are more stable than neutral clusters for n ≥ 4 depending on the temperature. The Boltzmann averaged Gibbs free energies for the formation of H2SO4(H2O)n clusters are favorable in colder regions of the troposphere (T = 216.65–273.15 K) for n = 1–6, but the formation of clusters with n ≥ 5 is not favorable at higher (T > 273.15 K) temperatures. Our results suggest the critical cluster of a binary H2SO4–H2O system must contain more than one H2SO4 and are in concert with recent findings(1) that the role of binary nucleation is small at ambient conditions, but significant at colder regions of the troposphere. Overall, the results support the idea that binary nucleation of sulfuric acid and water cannot account for nucleation of sulfuric acid in the lower troposphere.