2 resultados para Lower level relaxation

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Incorporation of enediynes into anticancer drugs remains an intriguing yet elusive strategy for the design of therapeutically active agents. Density functional theory was used to locate reactants, products, and transition states along the Bergman cyclization pathways connecting enediynes to reactive para-biradicals. Sum method correction to low-level calculations confirmed B3LYP/6-31G(d,p) as the method of choice in investigating enediynes. Herein described as MI:Sum, calculated reaction enthalpies differed from experiment by an average of 2.1 kcal·mol−1 (mean unsigned error). A combination of strain energy released across the reaction coordinate and the critical intramolecular distance between reacting diynes explains reactivity differences. Where experimental and calculated barrier heights are in disagreement, higher level multireference treatment of the enediynes confirms lower level estimates. Previous work concerning the chemically reactive fragment of esperamcin, MTC, is expanded to our model system MTC2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laboratory measurements of the rate coefficient for quenching of O3(nu2) by ground-state atomic oxygen, kO(nu2), at room temperature are presented. kO(nu2) is currently not well known and is necessary for appropriate nonlocal thermodynamic equilibrium modeling of the upper mesosphere and lower thermosphere. In this work, a 266 nm laser pulse photolyzes a small amount of O3 in a slow-flowing gas mixture of O3, Xe, and Ar. This process simultaneously produces atomic oxygen and increases the temperature of the gas mixture slightly, thereby increasing the population in the O3(nu2) state. Transient diode laser absorption spectroscopy is used to monitor the populations of the O3(nu2) and ground vibrational states as the system re-equilibrates. Relaxation rates are measured over a range of quencher concentrations to extract the rate coefficient of interest. The value of kO(nu2) was determined to be (2.2 0.5) * 10(-12) cm(3) s(-1).