3 resultados para Little Blue River Baptist Church, Indiana.

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There have been numerous councils throughout the Catholic Church?s history. From the First Council of Nicaea in 325 CE to Vatican II in 1962, only a few centuries have passed without any major church doctrinal change. Following hand in hand with changes in doctrine came the bifurcation of the Christian Church into the Roman CatholicChurch and the Orthodox Church. The first split came in 325 CE with Arianism. Arius of Alexandria and his followers did not agree with the Catholic Church?s viewpoint that the son, Jesus, should be on equal footing with the Father and the Holy Spirit. Constantine the Great brought the Arianism debate to the First Council of Nicaea,which declared Arianism a heretical religion. The following Catholic council?s decisions separated the two Churches even more, eventually creating the formal separation of the Church during the East-West Schism in the middle of the 11th century. Although the twoChurches constantly tried to unite, the Churches hit speed bumps along the way. Eventually, the 1274 Second Council of Lyons officially united the two Churches, even if only for an ephemeral time. At first glance, it might not seem that much resulted from the 1274 Second Council of Lyons. Almost immediately after the council?s ruling, the two Churches split again. Little is known as to why the 1274 Second Council of Lyons ultimately failed in its unification attempt. In this thesis, I will examine the churches of the Little Metropolis at Athens, Merbaka in the Argolid, and Agioi Theodoroi in Athens. In detailing the architectural features of these buildings, I will reconstruct the church building program in association with the 1274 Second Council of Lyons. I will also compare these churchesusing historical sources to keep the sociological, religious, political, and historical context accurate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metacommunity ecology focuses on the interaction between local communities and is inherently linked to dispersal as a result. Within this framework, communities are structured by a combination of in-site responses to the immediate environment (species sorting), stochasticity (patch dynamics), and connections to other communities via distance between communities and dispersal (neutrality), and source-sink dynamics (mass effects; see Chapter 1 for a detailed description of metacommunity theory, the study site, and macroinvertebrate communities found). In Chapter 2 I describe spatial scale of study and dispersal ability as both have the ability to influence the degree to which communities interact. However, little is known about how these factors influence the importance of all metacommunity dynamics. I compared dispersal mode of immature aquatic insects and dispersal ability of winged adults across multiple spatial scales in a large river. The strongest drivers of river communities were patch dynamics, followed by species sorting, then neutrality. Active dispersers during aquatic lifestages on average exhibited lower patch dynamics, higher species sorting, and significant mass effects compared to passive dispersers. Active and strong dispersers also had a scale-independent influence of neutrality, while neutrality was stronger at broader spatial scale for passive and weak dispersers. These results indicate as dispersal ability increases patch dynamics decreases, species sorting increases, and neutrality should decrease. The perceived influence of neutrality may also be dependent on spatial scale and dispersal ability. In Chapter 3 I describe how river benthic macroinvertebrate communities may influence tributary invertebrate communities via adult flight and tributaries may influence mainstem communities via immature drift. This relationship may also depend on relative mainstem and tributary size, as well as abiotic tributary influence on mainstem habitat. To investigate the interaction between a larger river and tributary I sampled mainstem benthic invertebrate communities and quantified habitat of a 7th order river (West Branch Susquehanna River) above and below a 5th order tributary confluence, as well as 0.95-3.2 km upstream in the tributary. Non-metric multidimensional scaling showed similar patterns of clustering between sampling locations for both habitat characteristics and invertebrate communities. In addition, mainstem river communities and habitat directly downstream of the tributary confluence cluster tightly together, intermediate between tributary and mid-channel river samples. In Bray-Curtis dissimilarity comparisons between tributary and mainstem river communities the furthest upstream tributary communities were least similar to river communities. Middle tributary samples were also closest by Euclidean distance to the upstream mainstem riffle and exhibited higher similarity to mid-channel samples than the furthest downstream tributary communities. My results indicate river and tributary benthic invertebrate communities may interact and likely result in direct and indirect mass effects of a tributary on the downstream mainstem community by invertebrate drift and habitat restructuring via material delivery from the tributary. I also showed likely direct effects of adult dispersal from the river and oviposition in proximal tributary locations where Euclidian, rather than river, distance may be more important in determining river-tributary interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laurentide glaciation during the early Pleistocene (~970 ka) dammed the southeast-flowing West Branch of the Susquehanna River (WBSR), scouring bedrock and creating 100-km-long glacial Lake Lesley near the Great Bend at Muncy, Pennsylvania (Ramage et al., 1998). Local drill logs and well data indicate that subsequent paleo-outwash floods and modern fluvial processes have deposited as much as 30 meters of alluvium in this area, but little is known about the valley fill architecture and the bedrock-alluvium interface. By gaining a greater understanding of the bedrock-alluvium interface the project will not only supplement existing depth to bedrock information, but also provide information pertinent to the evolution of the Muncy Valley landscape. This project determined if variations in the thickness of the valley fill were detectable using micro-gravity techniques to map the bedrock-alluvium interface. The gravity method was deemed appropriate due to scale of the study area (~30 km2), ease of operation by a single person, and the available geophysical equipment. A LaCoste and Romberg Gravitron unit was used to collect gravitational field readings at 49 locations over 5 transects across the Muncy Creek and Susquehanna River valleys (approximately 30 km2), with at least two gravity base stations per transect. Precise latitude, longitude and ground surface elevation at each location were measured using an OPUS corrected Trimble RTK-GPS unit. Base stations were chosen based on ease of access due to the necessity of repeat measurements. Gravity measurement locations were selected and marked to provide easy access and repeat measurements. The gravimeter was returned to a base station within every two hours and a looping procedure was used to determine drift and maximize confidence in the gravity measurements. A two-minute calibration reading at each station was used to minimize any tares in the data. The Gravitron digitally recorded finite impulse response filtered gravity measurements every 20 seconds at each station. A measurement period of 15 minutes was used for each base station occupation and a minimum of 5 minutes at all other locations. Longer or multiple measurements were utilized at some sites if drift or other externalities (i.e. train or truck traffic) were effecting readings. Average, median, standard deviation and 95% confidence interval were calculated for each station. Tidal, drift, latitude, free-air, Bouguer and terrain corrections were then applied. The results show that the gravitational field decreases as alluvium thickness increases across the axes of the Susquehanna River and Muncy Creek valleys. However, the location of the gravity low does not correspond with the present-day location of the West Branch of the Susquehanna River (WBSR), suggesting that the WBSR may have been constrained along Bald Eagle Mountain by a glacial lobe originating from the Muncy Creek Valley to the northeast. Using a 3-D inversion model, the topography of the bedrock-alluvium interface was determined over the extent of the study area using a density contrast of -0.8 g/cm3. Our results are consistent with the bedrock geometry of the area, and provide a low-cost, non-invasive and efficient method for exploring the subsurface and for supplementing existing well data.