3 resultados para Lateral Roots
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
U.S. financial deregulation is often popularly presented as a fundamental attack on financial regulation that began with neoliberalism's Big Bang in 1980. This paper argues this position is wrong in two ways. First, it is a process that stretches back decades before 1980. Textbook mentions of 1970s precursor "financial innovations" fall far short of presenting the breadth and duration of the pre-1980 attack on the system of regulation. Second, it has not been an across-the-board attack on financial regulation in the name of market efficiency as required by its ideology and claimed by its advocates, but rather a focused attack on only one of the five pillars of the system of regulation. This paper develops both of these assertions through a presentation of the five central pillars of the pre-1980 system of financial regulation, and the four major attacks on the three different aspects of the restrictions on financial competition.
Resumo:
The Gracias Laboratory at Johns Hopkins University has developed microgrippers which utilize chemically-actuated joints to be used in micro-surgery. These grippers, however, take up to thirty minutes to close fully when activated biochemicals in the human body. This is very problematic and could limit the use of the devices in surgery. It is the goal of this research to develop a gripper that uses theGracias Laboratory's existing joints in conjunction with mechanical components to decrease the closing time. The purpose of including the mechanical components is to induce a state of instability at which time a small perturbation would cause the joint to close fully.The main concept of the research was to use the lateral buckling of a triangular gripper geometry and use a toggle mechanism to decrease the closure time of the device. This would create a snap-action device mimicking the quick closure of a Venus flytrap. All developed geometries were tested using finite element analysis to determine ifloading conditions produced the desired buckled shape. This research examines lateral buckling on the micro-scale and the possibility ofusing this phenomenon in a micro-gripper. Although a final geometry with the required deformed shaped was not found, this document contains suggestions for future geometries that may produce the correct deformed shape. It was determined through this work that in order to obtain the desired deformed shape, polymeric sections need to be added to the geometry. This simplifies the analysis and allows the triangular structure to buckle in the appropriate way due to the added joints. Future work for this project will be completed by undergraduate students at Bucknell University. Fabrication and testing of devices will be done at Johns Hopkins University in the Gracias Laboratory.