2 resultados para KELVIN-HELMHOLTZ INSTABILITY

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an experimental and numerical study examining the dynamics of a gravity-driven contact line of a thin viscous film traveling down the outside of a vertical cylinder of radius R. Experiments on cylinders with radii ranging between 0.159 and 3.81 cm show that the contact line is unstable to a fingering pattern for two fluids with differing viscosities, surface tensions, and wetting properties. The dynamics of the contact line is studied and results are compared to previous studies of inclined plane experiments in order to understand the influence substrate curvature plays on the fingering pattern. A lubrication model is derived for the film height in the limit that ε = H/R≪1, where H is the upstream film thickness, and in terms of a Bond number ρgR3/(γH), and the linear stability of the contact line is analyzed using traveling wave solutions. Curvature controls the capillary ridge height of the traveling wave and the range of unstable wavelength when ε = O(10-1), whereas the shape and stability of the contact line converge to the behavior one observes on a vertical plane when ε ≤ O(10-2). The most unstable wave mode, cutoff wave mode for neutral stability, and maximum growth rate scale as 0.45 where = ρgR2/γ ≥ 1.3, and the contact line is unstable to fingering when ≥ 0.56. Using the experimental data to extrapolate outside the range of validity of the thin film model, we estimate the contact line is stable when <0.56. Agreement is excellent between the model and the experimental data for the wave number (i.e., number of fingers) and wavelength of the fingering pattern that forms along the contact line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential energy curves have been computed for [C2H6]2+ ions and the results used to interpret the conspicuous absence of these ions in 2E mass spectra and in charge-stripping experiments. The energies and structures of geometry-optimized ground-state singlet and excited-state triplet [C2H6]2+ ions have been determined along with energies for different decomposition barriers and dissociation asymptotes. Although singlet and triplet [C2H6]2+ ions can exist as stable entities, they possess low energy barriers to decomposition. Vertical Franck-Condon transitions, involving electron impact ionization of ethane as well as charge-stripping collisions of [C2H6]+ ions, produce [C2H6]2+ ions which promptly dissociate since they are formed with energies in excess of various decomposition barriers. Appearance energies computed for doubly-charged ethane fragment ions are in accordance with experimental values.