3 resultados para Kähler-Einstein Metrics
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
The occupant impact velocity (OIV) and acceleration severity index (ASI) are competing measures of crash severity used to assess occupant injury risk in full-scale crash tests involving roadside safety hardware, e.g. guardrail. Delta-V, or the maximum change in vehicle velocity, is the traditional metric of crash severity for real world crashes. This study compares the ability of the OIV, ASI, and delta-V to discriminate between serious and non-serious occupant injury in real world frontal collisions. Vehicle kinematics data from event data recorders (EDRs) were matched with detailed occupant injury information for 180 real world crashes. Cumulative probability of injury risk curves were generated using binary logistic regression for belted and unbelted data subsets. By comparing the available fit statistics and performing a separate ROC curve analysis, the more computationally intensive OIV and ASI were found to offer no significant predictive advantage over the simpler delta-V.
Resumo:
Purpose – The purpose of the present analysis is to show that HR systems are not always designed in ways that consider the well-being of employees. In particular, performance metric methods seem to be designed with organizational goals in mind while focusing less on what employees need and desire. Design/methodology/approach – A literature review and multiple case-study method was utilized. Findings – The analysis showed that performance metrics should be revaluated by executives and HR professionals if they seek to develop socially responsible organizational cultures which care about the well-being of employees. Originality/value – The paper exposes the fact that performance appraisal techniques can be rooted in methodologies that ignore or deemphasize the value of employee well-being. The analysis provides a context in which all HR practices can be questioned in relation to meeting the standards of a social justice agenda in the area of corporate social responsibility.
Resumo:
As the number of solutions to the Einstein equations with realistic matter sources that admit closed time-like curves (CTC's) has grown drastically, it has provoked some authors [10] to call for a physical interpretation of these seemingly exotic curves that could possibly allow for causality violations. A first step in drafting a physical interpretation would be to understand how CTC's are created because the recent work of [16] has suggested that, to follow a CTC, observers must counter-rotate with the rotating matter, contrary to the currently accepted explanation that it is due to inertial frame dragging that CTC's are created. The exact link between inertialframe dragging and CTC's is investigated by simulating particle geodesics and the precession of gyroscopes along CTC's and backward in time oriented circular orbits in the van Stockum metric, known to have CTC's that could be traversal, so the van Stockum cylinder could be exploited as a time machine. This study of gyroscopeprecession, in the van Stockum metric, supports the theory that CTC's are produced by inertial frame dragging due to rotating spacetime metrics.