1 resultado para Irreducible polynomial
em Bucknell University Digital Commons - Pensilvania - USA
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (3)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (34)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Boston University Digital Common (11)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (19)
- CaltechTHESIS (24)
- Cambridge University Engineering Department Publications Database (27)
- CentAUR: Central Archive University of Reading - UK (50)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (66)
- Cochin University of Science & Technology (CUSAT), India (11)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- CUNY Academic Works (18)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (6)
- Greenwich Academic Literature Archive - UK (28)
- Helda - Digital Repository of University of Helsinki (11)
- Indian Institute of Science - Bangalore - Índia (215)
- Instituto Politécnico do Porto, Portugal (5)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (4)
- Massachusetts Institute of Technology (10)
- Ministerio de Cultura, Spain (2)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (55)
- Queensland University of Technology - ePrints Archive (92)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (10)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (63)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (3)
- Universidade Complutense de Madrid (4)
- Universidade de Lisboa - Repositório Aberto (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (22)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (32)
- University of Michigan (4)
- University of Queensland eSpace - Australia (8)
- University of Southampton, United Kingdom (7)
- WestminsterResearch - UK (1)
Resumo:
This letter presents a new recursive method for computing discrete polynomial transforms. The method is shown for forward and inverse transforms of the Hermite, binomial, and Laguerre transforms. The recursive flow diagrams require only 2 additions, 2( +1) memory units, and +1multipliers for the +1-point Hermite and binomial transforms. The recursive flow diagram for the +1-point Laguerre transform requires 2 additions, 2( +1) memory units, and 2( +1) multipliers. The transform computation time for all of these transforms is ( )