3 resultados para Invertebrate Carotenoproteins
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Metacommunity ecology focuses on the interaction between local communities and is inherently linked to dispersal as a result. Within this framework, communities are structured by a combination of in-site responses to the immediate environment (species sorting), stochasticity (patch dynamics), and connections to other communities via distance between communities and dispersal (neutrality), and source-sink dynamics (mass effects; see Chapter 1 for a detailed description of metacommunity theory, the study site, and macroinvertebrate communities found). In Chapter 2 I describe spatial scale of study and dispersal ability as both have the ability to influence the degree to which communities interact. However, little is known about how these factors influence the importance of all metacommunity dynamics. I compared dispersal mode of immature aquatic insects and dispersal ability of winged adults across multiple spatial scales in a large river. The strongest drivers of river communities were patch dynamics, followed by species sorting, then neutrality. Active dispersers during aquatic lifestages on average exhibited lower patch dynamics, higher species sorting, and significant mass effects compared to passive dispersers. Active and strong dispersers also had a scale-independent influence of neutrality, while neutrality was stronger at broader spatial scale for passive and weak dispersers. These results indicate as dispersal ability increases patch dynamics decreases, species sorting increases, and neutrality should decrease. The perceived influence of neutrality may also be dependent on spatial scale and dispersal ability. In Chapter 3 I describe how river benthic macroinvertebrate communities may influence tributary invertebrate communities via adult flight and tributaries may influence mainstem communities via immature drift. This relationship may also depend on relative mainstem and tributary size, as well as abiotic tributary influence on mainstem habitat. To investigate the interaction between a larger river and tributary I sampled mainstem benthic invertebrate communities and quantified habitat of a 7th order river (West Branch Susquehanna River) above and below a 5th order tributary confluence, as well as 0.95-3.2 km upstream in the tributary. Non-metric multidimensional scaling showed similar patterns of clustering between sampling locations for both habitat characteristics and invertebrate communities. In addition, mainstem river communities and habitat directly downstream of the tributary confluence cluster tightly together, intermediate between tributary and mid-channel river samples. In Bray-Curtis dissimilarity comparisons between tributary and mainstem river communities the furthest upstream tributary communities were least similar to river communities. Middle tributary samples were also closest by Euclidean distance to the upstream mainstem riffle and exhibited higher similarity to mid-channel samples than the furthest downstream tributary communities. My results indicate river and tributary benthic invertebrate communities may interact and likely result in direct and indirect mass effects of a tributary on the downstream mainstem community by invertebrate drift and habitat restructuring via material delivery from the tributary. I also showed likely direct effects of adult dispersal from the river and oviposition in proximal tributary locations where Euclidian, rather than river, distance may be more important in determining river-tributary interactions.
Resumo:
Gregarine apicomplexans are a diverse group of single-celled parasites that have feeding stages (trophozoites) and gamonts that generally inhabit the extracellular spaces of invertebrate hosts living in marine, freshwater, and terrestrial environments. Inferences about the evolutionary morphology of gregarine apicomplexans are being incrementally refined by molecular phylogenetic data, which suggest that several traits associated with the feeding cells of gregarines arose by convergent evolution. The study reported here supports these inferences by showing how molecular data reveals traits that are phylogenetically misleading within the context of comparative morphology alone. We examined the ultrastructure and molecular phylogenetic positions of two gregarine species isolated from the spaghetti worm Thelepus japonicus: Selenidium terebellae Ray 1930 and S. melongena n. sp. The ultrastructural traits of S. terebellae were very similar to other species of Selenidium sensu stricto, such as having vermiform trophozoites with an apical complex, few epicytic folds, and a dense array of microtubules underlying the trilayered pellicle. By contrast, S. melongena n. sp. lacked a comparably discrete assembly of subpellicular microtubules, instead employing a system of fibrils beneath the cell surface that supported a relatively dense array of helically arranged epicytic folds. Molecular phylogenetic analyses of small subunit rDNA sequences derived from single-cell PCR unexpectedly demonstrated that these two gregarines are close sister species. The ultrastructural differences between these two species were consistent with the fact that S. terebellae infects the inner lining of the host intestines, and S. melongena n. sp. primarily inhabits the coelom, infecting the outside wall of the host intestine. Altogether, these data demonstrate a compelling case of niche partitioning and associated morphological divergence in marine gregarine apicomplexans. (C) 2014 Elsevier GmbH. All rights reserved.
Resumo:
Benthic communities in tributary-mainstem networks might interact via downstream drift of invertebrates or material from tributaries and adult dispersal from the mainstem. Depending on the strength of these interactions, mainstem downstream communities are expected to be more similar to tributary communities due to drift or habitat alteration. Communities not connected by flow are expected to be similar due to adult dispersal but decreasing in similarity with distance from the mainstem. We investigated interactions between invertebrate communities of a 7th order river and 5th order tributary by comparing benthic community structure in the river upstream and downstream of the tributary confluence and upstream in the tributary. Non-metric multidimensional scaling showed invertebrate communities and habitat traits from river locations directly downstream of the tributary clustered tightly, intermediate between tributary and mid-channel river locations. In addition, Bray-Curtis dissimilarity increased between the mainstem and tributary with distance upstream in the tributary. Our results indicate that similarities between mainstem and tributary communities are potentially caused by direct mass effects from tributary to downstream mainstem communities by invertebrate drift and indirect mass effects by habitat restructuring via material delivery from the tributary, as well as potential effects of adult dispersal from the river on proximal tributary communities.