3 resultados para Input-output model
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Model-based calibration of steady-state engine operation is commonly performed with highly parameterized empirical models that are accurate but not very robust, particularly when predicting highly nonlinear responses such as diesel smoke emissions. To address this problem, and to boost the accuracy of more robust non-parametric methods to the same level, GT-Power was used to transform the empirical model input space into multiple input spaces that simplified the input-output relationship and improved the accuracy and robustness of smoke predictions made by three commonly used empirical modeling methods: Multivariate Regression, Neural Networks and the k-Nearest Neighbor method. The availability of multiple input spaces allowed the development of two committee techniques: a 'Simple Committee' technique that used averaged predictions from a set of 10 pre-selected input spaces chosen by the training data and the "Minimum Variance Committee" technique where the input spaces for each prediction were chosen on the basis of disagreement between the three modeling methods. This latter technique equalized the performance of the three modeling methods. The successively increasing improvements resulting from the use of a single best transformed input space (Best Combination Technique), Simple Committee Technique and Minimum Variance Committee Technique were verified with hypothesis testing. The transformed input spaces were also shown to improve outlier detection and to improve k-Nearest Neighbor performance when predicting dynamic emissions with steady-state training data. An unexpected finding was that the benefits of input space transformation were unaffected by changes in the hardware or the calibration of the underlying GT-Power model.
Resumo:
We present a mechanistic modeling methodology to predict both the percolation threshold and effective conductivity of infiltrated Solid Oxide Fuel Cell (SOFC) electrodes. The model has been developed to mirror each step of the experimental fabrication process. The primary model output is the infiltrated electrode effective conductivity which provides results over a range of infiltrate loadings that are independent of the chosen electronically conducting material. The percolation threshold is utilized as a valuable output data point directly related to the effective conductivity to compare a wide range of input value choices. The predictive capability of the model is demonstrated by favorable comparison to two separate published experimental studies, one using strontium molybdate and one using La0.8Sr0.2FeO3-δ as infiltrate materials. Effective conductivities and percolation thresholds are shown for varied infiltrate particle size, pore size, and porosity with the infiltrate particle size having the largest impact on the results.
Resumo:
We present a mechanistic modeling methodology to predict both the percolation threshold and effective conductivity of infiltrated Solid Oxide Fuel Cell (SOFC) electrodes. The model has been developed to mirror each step of the experimental fabrication process. The primary model output is the infiltrated electrode effective conductivity which provides results over a range of infiltrate loadings that are independent of the chosen electronically conducting material. The percolation threshold is utilized as a valuable output data point directly related to the effective conductivity to compare a wide range of input value choices. The predictive capability of the model is demonstrated by favorable comparison to two separate published experimental studies, one using strontium molybdate and one using La0.8Sr0.2FeO3-delta as infiltrate materials. Effective conductivities and percolation thresholds are shown for varied infiltrate particle size, pore size, and porosity with the infiltrate particle size having the largest impact on the results. (C) 2013 The Electrochemical Society. All rights reserved.