2 resultados para Input technologies

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric power grids throughout the world suffer from serious inefficiencies associated with under-utilization due to demand patterns, engineering design and load following approaches in use today. These grids consume much of the world’s energy and represent a large carbon footprint. From material utilization perspectives significant hardware is manufactured and installed for this infrastructure often to be used at less than 20-40% of its operational capacity for most of its lifetime. These inefficiencies lead engineers to require additional grid support and conventional generation capacity additions when renewable technologies (such as solar and wind) and electric vehicles are to be added to the utility demand/supply mix. Using actual data from the PJM [PJM 2009] the work shows that consumer load management, real time price signals, sensors and intelligent demand/supply control offer a compelling path forward to increase the efficient utilization and carbon footprint reduction of the world’s grids. Underutilization factors from many distribution companies indicate that distribution feeders are often operated at only 70-80% of their peak capacity for a few hours per year, and on average are loaded to less than 30-40% of their capability. By creating strong societal connections between consumers and energy providers technology can radically change this situation. Intelligent deployment of smart sensors, smart electric vehicles, consumer-based load management technology very high saturations of intermittent renewable energy supplies can be effectively controlled and dispatched to increase the levels of utilization of existing utility distribution, substation, transmission, and generation equipment. The strengthening of these technology, society and consumer relationships requires rapid dissemination of knowledge (real time prices, costs & benefit sharing, demand response requirements) in order to incentivize behaviors that can increase the effective use of technological equipment that represents one of the largest capital assets modern society has created.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Model-based calibration of steady-state engine operation is commonly performed with highly parameterized empirical models that are accurate but not very robust, particularly when predicting highly nonlinear responses such as diesel smoke emissions. To address this problem, and to boost the accuracy of more robust non-parametric methods to the same level, GT-Power was used to transform the empirical model input space into multiple input spaces that simplified the input-output relationship and improved the accuracy and robustness of smoke predictions made by three commonly used empirical modeling methods: Multivariate Regression, Neural Networks and the k-Nearest Neighbor method. The availability of multiple input spaces allowed the development of two committee techniques: a 'Simple Committee' technique that used averaged predictions from a set of 10 pre-selected input spaces chosen by the training data and the "Minimum Variance Committee" technique where the input spaces for each prediction were chosen on the basis of disagreement between the three modeling methods. This latter technique equalized the performance of the three modeling methods. The successively increasing improvements resulting from the use of a single best transformed input space (Best Combination Technique), Simple Committee Technique and Minimum Variance Committee Technique were verified with hypothesis testing. The transformed input spaces were also shown to improve outlier detection and to improve k-Nearest Neighbor performance when predicting dynamic emissions with steady-state training data. An unexpected finding was that the benefits of input space transformation were unaffected by changes in the hardware or the calibration of the underlying GT-Power model.