2 resultados para Infusions, Intraventricular

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Altered pressure in the developing left ventricle (LV) results in altered morphology and tissue material properties. Mechanical stress and strain may play a role in the regulating process. This study showed that confocal microscopy, three-dimensional reconstruction, and finite element analysis can provide a detailed model of stress and strain in the trabeculated embryonic heart. The method was used to test the hypothesis that end-diastolic strains are normalized after altered loading of the LV during the stages of trabecular compaction and chamber formation. Stage-29 chick LVs subjected to pressure overload and underload at stage 21 were reconstructed with full trabecular morphology from confocal images and analyzed with finite element techniques. Measured material properties and intraventricular pressures were specified in the models. The results show volume-weighted end-diastolic von Mises stress and strain averaging 50–82% higher in the trabecular tissue than in the compact wall. The volume-weighted-average stresses for the entire LV were 115, 64, and 147Pa in control, underloaded, and overloaded models, while strains were 11, 7, and 4%; thus, neither was normalized in a volume-weighted sense. Localized epicardial strains at mid-longitudinal level were similar among the three groups and to strains measured from high-resolution ultrasound images. Sensitivity analysis showed changes in material properties are more significant than changes in geometry in the overloaded strain adaptation, although resulting stress was similar in both types of adaptation. These results emphasize the importance of appropriate metrics and the role of trabecular tissue in evaluating the evolution of stress and strain in relation to pressure-induced adaptation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetylcholine (ACh) has not been tested for a role in the development of sexual exhaustion in males. However, male hamsters receiving infusions into the medial preoptic area (MPOA) of the muscarinic agonist oxotremorine (OXO) or antagonist scopolamine (SCO) show changes in the postejaculatory interval, one of the measures that changes most consistently as exhaustion approaches. In addition, central SCO treatments cause changes in the patterning of intromissions that resemble those signaling exhaustion. To extend these observations and more thoroughly test the dependence of sexual exhaustion on ACh, male hamsters received MPOA treatments of OXO, SCO or the combination of the two before mating to exhaustion. Relative to placebo, OXO infusions caused small but consistent increases in ejaculation frequency and long intromission latency, delaying the appearance of exhaustion. Scopolamine treatments did the reverse, dramatically accelerating the development of exhaustion. Consistent with and possibly responsible for these changes were effects on the quality of performance prior to exhaustion. These included differences in overall copulatory efficiency (e.g., ejaculations/intromission), which was increased by OXO and decreased by SCO. They also extended to several standard measures of copulatory behavior, including intromission frequency, ejaculation latency and the postejaculatory interval: Most of these were increased by SCO and decreased by OXO. Finally, whereas most or all effects of OXO were counteracted by SCO, most or all of the responses to SCO resisted change by added OXO. This asymmetry in the responses to combined treatment raises the possibility that the effects of these drugs on sexual exhaustion and other elements of male behavior are mediated by distinct muscarinic receptors. Copyright 2013 Elsevier Inc. All rights reserved.