2 resultados para Information structures
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Potential energy curves have been calculated for CnH22+ (n = 2−9) ions and results have been compared with data on unimolecular charge-separation reactions obtained by Rabrenović and Beynon. Geometry-optimized, minimum energy, linear CnH22+ structures have been computed for ground and low-lying excited states. These carbodications exist in stable configurations with well depths greater than 3 eV. Decomposition pathways into singly charged fragment ions lead to products with computed kinetic energies in excess of 1 eV. A high degree of correlation exists between experimental information and results computed for linear CnH22+ structures having hydrogen atoms on each end. The exception involves C4H22+reactions where a low-lying doubly charged isomer must be invoked to rationalize the experimental data.
Resumo:
This project addresses the unreliability of operating system code, in particular in device drivers. Device driver software is the interface between the operating system and the device's hardware. Device drivers are written in low level code, making them difficult to understand. Almost all device drivers are written in the programming language C which allows for direct manipulation of memory. Due to the complexity of manual movement of data, most mistakes in operating systems occur in device driver code. The programming language Clay can be used to check device driver code at compile-time. Clay does most of its error checking statically to minimize the overhead of run-time checks in order to stay competitive with C's performance time. The Clay compiler can detect a lot more types of errors than the C compiler like buffer overflows, kernel stack overflows, NULL pointer uses, freed memory uses, and aliasing errors. Clay code that successfully compiles is guaranteed to run without failing on errors that Clay can detect. Even though C is unsafe, currently most device drivers are written in it. Not only are device drivers the part of the operating system most likely to fail, they also are the largest part of the operating system. As rewriting every existing device driver in Clay by hand would be impractical, this thesis is part of a project to automate translation of existing drivers from C to Clay. Although C and Clay both allow low level manipulation of data and fill the same niche for developing low level code, they have different syntax, type systems, and paradigms. This paper explores how C can be translated into Clay. It identifies what part of C device drivers cannot be translated into Clay and what information drivers in Clay will require that C cannot provide. It also explains how these translations will occur by explaining how each C structure is represented in the compiler and how these structures are changed to represent a Clay structure.