2 resultados para ION-ATOM COLLISIONS

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

na provide students with motivation for the study of quantum mechanics. That microscopic matter exists in quantized states can be demonstrated with modem versions of historic experiments: atomic line spectra (I), resonance potentials, and blackbody radiation. The resonance potentials of mercury were discovered by Franck and Hertz in 1914 (2). Their experiment consisted of bombarding atoms by electrons, and detecting the kinetic energy loss of the scattered electrons (3). Prior to the Franck-Hertz experiment, spectroscopic work bv Balmer and Rvdbere revealed that atoms emitted radiatibn at discrete ekergiis. The Franck-Hertz experiment showed directly that auantized enerm levels in an atom are real, not jist optiEal artifacts. atom can be raised to excited states by inelastic collisions with electrons as well as lowered from excited states by emission of photons. The classic Franck-Hertz experiment is carried out with mercury (4-7). Here we present an experiment for the study of resonance potentials using neon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient Diode Laser Absorption Spectroscopy (TDLAS) was used to perform vibrational state population studies of the CO2 product from the hyperthermal reaction between C2H4 and O(3P) at room temperature using O3 as the O-atom precursor. Photodissociation of O3 using a frequency quadrupled Q-switch Nd:YAG laser pulse at 266 nm produced O(3P) atoms at high velocities which subsequently reacted with C2H4, producing several primary and secondary products including CO2. The CO2 product was detected using high-resolution TDLAS under five unique sets of reaction conditions. The vibrational distribution of the CO2 product did not follow a Boltzmann distribution at all five sets of conditions. The experiments showed a distribution in which there was a surprisingly high population in the (1000) (symmetric stretching) state compared with the other states probed, all of which contained bend excitation. In general, the CO2 population in the (1000) state was about 15-20% more populated than the Boltzmann distribution predicts. A possible explanation for this result may lie in the mechanism of CO2 evolution from the C2H4 + O(3P) reaction.