2 resultados para INJECTION CALIBRATION SYSTEM

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model based calibration has gained popularity in recent years as a method to optimize increasingly complex engine systems. However virtually all model based techniques are applied to steady state calibration. Transient calibration is by and large an emerging technology. An important piece of any transient calibration process is the ability to constrain the optimizer to treat the problem as a dynamic one and not as a quasi-static process. The optimized air-handling parameters corresponding to any instant of time must be achievable in a transient sense; this in turn depends on the trajectory of the same parameters over previous time instances. In this work dynamic constraint models have been proposed to translate commanded to actually achieved air-handling parameters. These models enable the optimization to be realistic in a transient sense. The air handling system has been treated as a linear second order system with PD control. Parameters for this second order system have been extracted from real transient data. The model has been shown to be the best choice relative to a list of appropriate candidates such as neural networks and first order models. The selected second order model was used in conjunction with transient emission models to predict emissions over the FTP cycle. It has been shown that emission predictions based on air-handing parameters predicted by the dynamic constraint model do not differ significantly from corresponding emissions based on measured air-handling parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the swirl component of air injection on the performance of an airlift pump was examined experimentally. An airlift pump is a device that pumps a liquid or slurry using only gas injection. In this study, the liquid used was water and the injected gas was air. The effect of the air swirl was determined by measuring the water discharge from an airlift pump with an air injection nozzle in which the air flow had both axial and tangential components and then repeating the tests with a nozzle with only axial injection. The induced water flow was measured using an orifice meter in the supply pipeline. Tests were run for air pressures ranging from 10 to 30 pounds per square inch, gauge (psig), at flow rates from 5 standard cubic feet per minute (scfm) up the maximum values attainable at the given pressure (usually in the range from 20 to 35 scfm). The nozzle with only axial injection produced a water flow rate that wasequivalent to or better than that induced by the nozzle with swirl. The swirl component of air injection was found to be detrimental to pump performance for all but the smallest air injection flow rate. Optimum efficiency was found for air injection pressures of 10 psig to 15 psig. In addition, the effect of using auxiliary tangential injection of water to create a swirl component in the riser before air injection on the overall capacity (i.e., flow rate) and efficiencyof the pump was examined. Auxiliary tangential water injection was found to have no beneficial effect on the pump capacity or performance in the present system.