2 resultados para IMPULSE
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
The benefits animals derive from living in social groups have produced the evolution of many forms of cooperative behavior. To cooperate, two or more individuals coordinate their actions to accomplish a common goal. One cognitive process that has the potential to influence cooperation is self control. Individuals delaying their impulsive choice for an immediate reward may potentially receive a larger reward later by cooperating with others. In this study, I measured whether brown capuchin monkeys (Cebus apella) were capable of impulse control and whether impulse control was related to cooperation. Impulse control and cooperation were measured using a lazy susan-like apparatus, on which animals could turn a wheel to receive food rewards. The capuchins went through two training phases that taught them how to turn the wheel efficiently to obtain rewards and how to turn the wheel to obtain the larger of two rewards. After training, I tested impulse control by giving the capuchins a choice between a smaller and a larger reward placed at shorter or more distant locations on the wheel. The capuchins demonstrated impulse control in that they tended to inhibit the impulse to select the smaller reward when it was closer and easier to reach and instead selected the larger reward when it was farther away. Cooperation was tested in all possible dyads of seven individuals, a total of 21 dyads, by allowing each dyad 10 trials to work together with effort on the lazy-susan so that each would obtain a reward. Seventeen out of 21 dyads cooperated by simultaneously moving the wheel in the same direction. The correlation between how often a particular dyad cooperated and their average impulse control score was not statistically significant, r(21) = -.125, p = .591. Capuchins demonstrated impulse control and cooperation using this novel apparatus but the two abilities were not related. Other factors such as the unique social relationship between two individuals may play a more prominent role in the motivation to cooperate rather than the cognitive capacity to inhibit behavior.
Resumo:
Laurentide glaciation during the early Pleistocene (~970 ka) dammed the southeast-flowing West Branch of the Susquehanna River (WBSR), scouring bedrock and creating 100-km-long glacial Lake Lesley near the Great Bend at Muncy, Pennsylvania (Ramage et al., 1998). Local drill logs and well data indicate that subsequent paleo-outwash floods and modern fluvial processes have deposited as much as 30 meters of alluvium in this area, but little is known about the valley fill architecture and the bedrock-alluvium interface. By gaining a greater understanding of the bedrock-alluvium interface the project will not only supplement existing depth to bedrock information, but also provide information pertinent to the evolution of the Muncy Valley landscape. This project determined if variations in the thickness of the valley fill were detectable using micro-gravity techniques to map the bedrock-alluvium interface. The gravity method was deemed appropriate due to scale of the study area (~30 km2), ease of operation by a single person, and the available geophysical equipment. A LaCoste and Romberg Gravitron unit was used to collect gravitational field readings at 49 locations over 5 transects across the Muncy Creek and Susquehanna River valleys (approximately 30 km2), with at least two gravity base stations per transect. Precise latitude, longitude and ground surface elevation at each location were measured using an OPUS corrected Trimble RTK-GPS unit. Base stations were chosen based on ease of access due to the necessity of repeat measurements. Gravity measurement locations were selected and marked to provide easy access and repeat measurements. The gravimeter was returned to a base station within every two hours and a looping procedure was used to determine drift and maximize confidence in the gravity measurements. A two-minute calibration reading at each station was used to minimize any tares in the data. The Gravitron digitally recorded finite impulse response filtered gravity measurements every 20 seconds at each station. A measurement period of 15 minutes was used for each base station occupation and a minimum of 5 minutes at all other locations. Longer or multiple measurements were utilized at some sites if drift or other externalities (i.e. train or truck traffic) were effecting readings. Average, median, standard deviation and 95% confidence interval were calculated for each station. Tidal, drift, latitude, free-air, Bouguer and terrain corrections were then applied. The results show that the gravitational field decreases as alluvium thickness increases across the axes of the Susquehanna River and Muncy Creek valleys. However, the location of the gravity low does not correspond with the present-day location of the West Branch of the Susquehanna River (WBSR), suggesting that the WBSR may have been constrained along Bald Eagle Mountain by a glacial lobe originating from the Muncy Creek Valley to the northeast. Using a 3-D inversion model, the topography of the bedrock-alluvium interface was determined over the extent of the study area using a density contrast of -0.8 g/cm3. Our results are consistent with the bedrock geometry of the area, and provide a low-cost, non-invasive and efficient method for exploring the subsurface and for supplementing existing well data.