3 resultados para Hydrates.

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using molecular dynamics configurational sampling combined with ab initio energy calculations, we determined the low energy isomers of the bisulfate hydrates. We calculated the CCSD(T) complete basis set (CBS) binding electronic and Gibbs free energies for 53 low energy isomers of HSO4–(H2O)n=1–6 and derived the thermodynamics of adding waters sequentially to the bisulfate ion and its hydrates. Comparing the HSO4–/H2O system to the neutral H2SO4/H2O cluster, water binds more strongly to the anion than it does to the neutral molecules. The difference in the binding thermodynamics of HSO4–/H2O and H2SO4/H2O systems decreases with increasing number of waters. The thermodynamics for the formation of HSO4–(H2O)n=1–5 is favorable at 298.15 K, and that of HSO4–(H2O)n=1–6 is favorable for T < 273.15 K. The HSO4– ion is almost always hydrated at temperatures and relative humidity values encountered in the troposphere. Because the bisulfate ion binds more strongly to sulfuric acid than it does to water, it is expected to play a role in ion-induced nucleation by forming a strong complex with sulfuric acid and water, thus facilitating the formation of a critical nucleus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the thermodynamics of sulfuric acid dimer hydration using ab initio quantum mechanical methods. For (H2SO4)2(H2O)n where n = 0−6, we employed high-level ab initio calculations to locate the most stable minima for each cluster size. The results presented herein yield a detailed understanding of the first deprotonation of sulfuric acid as a function of temperature for a system consisting of two sulfuric acid molecules and up to six waters. At 0 K, a cluster of two sulfuric acid molecules and one water remains undissociated. Addition of a second water begins the deprotonation of the first sulfuric acid leading to the di-ionic species (the bisulfate anion HSO4−, the hydronium cation H3O+, an undissociated sulfuric acid molecule, and a water). Upon the addition of a third water molecule, the second sulfuric acid molecule begins to dissociate. For the (H2SO4)2(H2O)3 cluster, the di-ionic cluster is a few kcal mol−1 more stable than the neutral cluster, which is just slightly more stable than the tetra-ionic cluster (two bisulfate anions, two hydronium cations, and one water). With four water molecules, the tetra-ionic cluster, (HSO4−)2(H3O+)2(H2O)2, becomes as favorable as the di-ionic cluster H2SO4(HSO4−)(H3O+)(H2O)3 at 0 K. Increasing the temperature favors the undissociated clusters, and at room temperature we predict that the di-ionic species is slightly more favorable than the neutral cluster once three waters have been added to the cluster. The tetra-ionic species competes with the di-ionic species once five waters have been added to the cluster. The thermodynamics of stepwise hydration of sulfuric acid dimer is similar to that of the monomer; it is favorable up to n = 4−5 at 298 K. A much more thermodynamically favorable pathway forming sulfuric acid dimer hydrates is through the combination of sulfuric acid monomer hydrates, but the low concentration of sulfuric acid relative to water vapor at ambient conditions limits that process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binary H2SO4−H2O nucleation is one of the most important pathways by which aerosols form in the atmosphere, and the presence of ternary species like amines increases aerosol formation rates. In this study, we focus on the hydration of a ternary system of sulfuric acid (H2SO4), methylamine (NH2CH3), and up to six waters to evaluate its implications for aerosol formation. By combining molecular dynamics (MD) sampling with high-level ab initio calculations, we determine the thermodynamics of forming H2SO4(NH2CH3)(H2O)n, where n = 0−6. Because it is a strong acid−base system, H2SO4−NH2CH3 quickly forms a tightly bound HSO4−−NH3CH3+ complex that condenses water more readily than H2SO4 alone. The electronic binding energy of H2SO4−NH2CH3 is −21.8 kcal mol−1 compared with −16.8 kcal mol−1 for H2SO4−NH3 and −12.8 kcal mol−1 for H2SO4−H2O. Adding one to two water molecules to the H2SO4−NH2CH3 complex is more favorable than adding to H2SO4 alone, yet there is no systematic difference for n ≥ 3. However, the average number of water molecules around H2SO4−NH2CH3 is consistently higher than that of H2SO4, and it is fairly independent of temperature and relative humidity.