3 resultados para Hilbert, Espais de
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Given the weight sequence for a subnormal recursively generated weighted shift on Hilbert space, one approach to the study of classes of operators weaker than subnormal has been to form a backward extension of the shift by prefixing weights to the sequence. We characterize positive quadratic hyponormality and revisit quadratic hyponormality of certain such backward extensions of arbitrary length, generalizing earlier results, and also show that a function apparently introduced as a matter of convenience for quadratic hyponormality actually captures considerable information about positive quadratic hyponormality.
Resumo:
We consider analytic reproducing kernel Hilbert spaces H with orthonormal bases of the form {(a(n) + b(n)z)z(n) : n >= 0}. If b(n) = 0 for all n, then H is a diagonal space and multiplication by z, M-z, is a weighted shift. Our focus is on providing extensive classes of examples for which M-z is a bounded subnormal operator on a tridiagonal space H where b(n) not equal 0. The Aronszajn sum of H and (1 - z)H where H is either the Hardy space or the Bergman space on the disk are two such examples.
Resumo:
We consider k-hyponormality and n-contractivity (k, n = 1, 2, ...) as "weak subnormalities" for a Hilbert space operator. It is known that k-hyponormality implies 2k-contractivity; we produce some classes of weighted shifts including a parameter for which membership in a certain n-contractive class is equivalent to k-hyponormality. We consider as well some extensions of these results to operators arising as restrictions of these shifts, or from linear combinations of the Berger measures associated with the shifts.