4 resultados para High temperatures

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidation of isoprene by the hydroxyl radical leads to tropospheric ozone formation. Consequently, a more complete understanding of this reaction could lead to better models of regional air quality, a better understanding of aerosol formation, and a better understanding of reaction kinetics and dynamics. The most common first step in the oxidation of isoprene is the formation of an adduct, with the hydroxyl radical adding to one of four unsaturated carbon atoms in isoprene. In this paper, we discuss how the initial conformations of isoprene, s-trans and s-gauche, influences the pathways to adduct formation. We explore the formation of pre-reactive complexes at low and high temperatures, which are often invoked to explain the negative temperature dependence of this reaction’s kinetics. We show that at higher temperatures the free energy surface indicates that a pre-reactive complex is unlikely, while at low temperatures the complex exists on two reaction pathways. The theoretical results show that at low temperatures all eight pathways possess negative reaction barriers, and reaction energies that range from −36.7 to −23.0 kcal·mol−1. At temperatures in the lower atmosphere, all eight pathways possess positive reaction barriers that range from 3.8 to 6.0 kcal·mol−1 and reaction energies that range from −28.8 to −14.4 kcal·mol−1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polystyrene (PSt) radicals and poly(methyl acrylate) (PMA) radicals, derived from their monobrominated precursors prepared by atom transfer radical polymerization (ATRP), were formed in the presence of the radical trap 2-methyl-2-nitrosopropane (MNP), selectively forming PSt-PMA diblock copolymers with an alkoxyamine at the junction between the block segments. This radical trap-assisted, atom transfer radical coupling (RTA-ATRC) was performed in a single pot at low temperature (35 °C), while analogous traditional ATRC reactions at this temperature, which lacked the radical trap, resulted in no observed coupling and the PStBr and PMABr precursors were simply recovered. Selective formation of the diblock under RTA-ATRC conditions is consistent with the PStBr and PMABr having substantially different KATRP values, with PSt radicals initially being formed and trapped by the MNP and the PMA radicals being trapped by the in situ-formed nitroxide end-capped PSt. The midchain alkoxyamine functionality was confirmed by thermolysis of the diblock copolymer, resulting in recovery of the PSt segment and degradation of the PMA block at the relatively high temperatures (125 °C) required for thermal cleavage. A PSt-PMA diblock formed by chain extenstion ATRP using PStBr as the macroinitiator (thus lacking the alkoxyamine between the PSt-PMA segements) was inert to thermolysis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3619–3626

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polystyrene (PSt) radicals and poly(methyl acrylate) (PMA) radicals, derived from their monobrominated precursors prepared by atom transfer radical polymerization (ATRP), were formed in the presence of the radical trap 2-methyl-2-nitrosopropane (MNP), selectively forming PSt-PMA diblock copolymers with an alkoxyamine at the junction between the block segments. This radical trap-assisted, atom transfer radical coupling (RTA-ATRC) was performed in a single pot at low temperature (35 degrees C), while analogous traditional ATRC reactions at this temperature, which lacked the radical trap, resulted in no observed coupling and the PStBr and PMABr precursors were simply recovered. Selective formation of the diblock under RTA-ATRC conditions is consistent with the PStBr and PMABr having substantially different K-ATRP values, with PSt radicals initially being formed and trapped by the MNP and the PMA radicals being trapped by the in situ-formed nitroxide end-capped PSt. The midchain alkoxyamine functionality was confirmed by thermolysis of the diblock copolymer, resulting in recovery of the PSt segment and degradation of the PMA block at the relatively high temperatures (125 degrees C) required for thermal cleavage. A PSt-PMA diblock formed by chain extenstion ATRP using PStBr as the macroinitiator (thus lacking the alkoxyamine between the PSt-PMA segements) was inert to thermolysis. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3619-3626

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method for the production of macrocyclic polystyrene via ring closing of a linear !,"-dibrominated polystyrene by an Atom Transfer Radical Coupling (ATRC) reaction is described. The dibrominated polystyrene chain was produced from two simultaneous atom transfer radical polymerizations (ATRPs) originating from a dibrominated benzal bromide initiator. To ensure the retention of the halogen end groups polymerization was allowed to proceed to less than 50% conversion. Using this precursor in an intramolecular ATRC (ring closing) reaction was found to yield in excess of 90% cyclic product based on refractive index-gel permeation chromatography (GPC) analysis. The cyclic architecture of the polymer was verified by GPC, Nuclear Magnetic Resonance (NMR), and mass spectrometry analysis. The utility of this method has been expanded by the addition of 2-methyl-2-nitrosopropane to the coupling reaction, which allows for the coupling to proceed at a faster rate and to yield macrocycles with incorporated alkoxyamine functionality. The alkoxyamine functionality allows for degradation of the cycles at high temperatures (>125° C) and we hypothesize that it may allow the macrocycles to act as a macroinitiator for a ring expansion polymerization in future studies.