5 resultados para HYPERBARIC OXYGENATION
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Soybean lipoxygenase-1 is a model for lipoxygenase activity. While the mechanism of oxygenation is understood, the substrate binding mechanism has not yet been elucidated. Two putative binding mechanisms are the ¿head-first¿ and ¿tail-first¿ models, in which the carboxy-terminus or the methyl terminus of the fatty acid substrate is inserted into the active site while the remainder of the molecule protrudes from the surface, respectively. Previous work has demonstrated that derivatization of fatty acid substrates with D-tryptophan increases active site affinity. It has also been shown that while polyunsaturated fatty acids are the natural substrates of lipoxygenases, monounsaturated fatty acids can be oxygenated at a much slower rate. Starting with a monounsaturated fatty acid, oleic acid, as a platform, the molecule N-oleoyl-D-tryptophan (ODT) was synthesized with the anticipation of it being a potent competitive substrate-analogue inhibitor that could be used to discern the substrate binding mechanism. Inhibition kinetics demonstrated that this molecule functions as a partially competitive inhibitor, through an unknown mechanism. The implication behind partially competitive inhibition is that substrate and inhibitor molecules can bind simultaneously to the enzyme, which alludes to the presence of an allosteric binding domain. To investigate the possibility of an inhibitor binding site on the non-catalytic subunit, limited proteolysis was used to cleave the subunits apart which should have eliminated inhibition. Interestingly, it was observed that at high substrate concentrations the inhibitor was completely ineffective, but at low substrate concentrations the inhibitor maintained its standard efficacy. A satisfactory explanation for these results has not yet been determined.
Resumo:
Soybean lipoxygenase-1 (SBLO-1) catalyzes the oxygenation of polyunsaturated fatty acids into conjugated diene hydroperoxides. The three dimensional structure of SBLO-1 is known, but it is not certain how substrates bind. One hypothesis involves the transient separation of helix-2 and helix-11 located on the exterior of the molecule in front of the active site iron. A second hypothesis involves a conformational change in the side chains of residues leucine 541 and threonine 259. To test these hypotheses, site directed mutagenesis was used to create a cysteine mutation on each helix, which could allow for the formation of a disulfide linkage. Disulfide formation between the two cysteines in the T259C,S545C mutant was found to be unfavorable, but later shown to be present at higher pH values using SDS-PAGE. Treatment of the T259C,S545C with the crosslinker 2,3-dibromomaleimide (DBM) resulted in a 50% reduction in catalytic activity. No loss of activity was observed when the single mutant, S545C, or the wild type was treated with DBM. Single mutants T259C and L541C both showed approximately 20% reduction in the rate after addition of DBM. Double mutants T259C,L541C and S263C,S545C showed approximately 30% reduction in the rate after addition of DBM. Single mutants T259C and L541C showed an increase in activity after incubation with NEM. Double mutants T259C,S545C and T259C,L541C showed an increase in activity after incubation with NEM. The S263C,S545C double mutant showed a slight decrease in activity in the presence of NEM. It is unclear how the NEM and DBM are interacting with the molecule, but this can easily be determined through mass spectrometry experiments.
Resumo:
Soybean lipoxygenase-1 (SBLO-1) catalyzes the oxygenation of linoleic acid to form 13(S) and 9(R) hydroperoxides. The manner in which substrates bind to the lipoxygenase family of enzymes is not known. It is believed fatty acid substrates may bind either with the aliphatic end first or with the carboxylate group facing the interior of the protein. This thesis tested a potential methyl-end first substrate binding mechanism by studying the activity of SBLO-1 to oxygenate immobilized linoleoyl residues attached to an insoluble polymer. Linoleic acid was attached to aminohexyl agarose in the presence of N-(3- dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) and Nhydroxysuccinimide (NHS). The concentration of the covalently attached residues was facilitated by enriching linoleic acid with a small amount of the radioactive 14C-isotope. Functionalization yields of 3% available primary amines on the resin were obtained. Enzymatic oxygenation of the linoleoyl-residues was verified using the ferrous oxidation in xylenol orange (FOX) assay. Approximately 30% of the attached linoleoyl moieties were converted to hydroperoxides in the presence of SBLO-1. A disulfide-containing cleavable linker, cystamine, was used as part of an improved method to isolate the product in a facile manner. Cystamine was attached to NHS-activated agarose with approximately 5% overall functionalization yield of available functional groups. 14C-linoleic acid was successfully covalently linked to the cystamine moieties in the presence of EDC and NHS. The FOX assay verified the enzymatic oxygenation of the linoleoyl residues attached to cystamine-derivatized agarose. The isolation of the peroxide product was attempted in a series of extractions in organic solvents. The product was analyzed using GC/MS which did not show a new peak indicative of product. Further work is needed to successfully analyze the stereoand regiochemistry of the oxygenated product. The presence of the peroxides in this study indicated the linoleoyl residues behave as substrates of SBLO-1. It is unknown how bulky substrates bind to the active site; however, it is difficult to rationalize a carboxylate group-first binding mode. Discovery of the 13(S)-hydroperoxide product on the linoleoyl-agarose would support the claim of a potential methyl-end first binding mechanism.
Resumo:
Lipoxygenases are nonheme-iron proteins that catalyze the oxygenation of polyunsaturated fatty acids to give conjugated diene hydroperoxides. For example, soybean lipoxygenase-1 (SBLO-1) converts linoleate into 13-(S)-hydroperoxy-9(Z),11(E)-octadecadienoate (13(S)-HPOD). Although the crystal structure of SBLO-1 has been determined, it is still unclear how the substrate binds at the active site. This absence of knowledge makes it difficult to understand the role of the enzyme during catalysis of the reaction. We hypothesize that SBLO-1 binds linoleate ¿tail-first¿, so that the methyl terminus is within a hydrophobic pocket deep within the enzyme. It is believed that the hydrophobic residue phenylalanine-557 at this site has stabilizing interactions with the terminal methyl group on linoleate. To test this hypothesis, we have developed a synthetic pathway that will yield linoleate analogs with longer fatty acid chains by 1 and 2 more carbons at the alkyl terminus. These substrates will be analyzed through kinetic assays done in combination with wild type SBLO-1 and mutants in which we have replaced phenylalanine-557 with valine.
Resumo:
Lipoxygenases are a class of enzymes which consist of non-heme iron dioxygenases that are produced by fungi, plants, and mammals and catalyze the oxygenation of polyunsaturated fatty acid substrates to unsaturated fatty acid hydroperoxide products. The unsaturated fatty acid hydroperoxide products are stereo- and regiospecific. One such lipoxygenase, soybean lipoxygenase-1 (SBLO-1), catalyzes the conversion of linoleate to 13-hydroperoxy-9(Z),11(E)-octadecadienoate (13-HPOD) and a small amount of 9-hydroperoxy-10(E),12(Z)-octadecadienoate (9-HPOD). Although the structure of SBLO-1 is known and it is the most widely studied lipoxygenase, how it binds to substrate is still poorly understood. Two competing binding hypotheses that have been used to understand and explain the binding are the head first binding model and the tail first binding model. The head first binding model predicts linoleate binds with its polar carboxylate group in the binding pocket and the methyl terminus at the surface of the binding pocket. The tail first binding model predicts that linoleate binds with its methyl terminus end in the binding pocket and the polar carboxylate group at the surface of the binding pocket. Both binding models have been used in the explanation of previous work. In previous work the replacement of phenylalanine with valine has been performed to produce the phe557val mutant SBLO-1. The mutant SBLO-1 was then used in the enzymatic oxygenation of linoleate. With this mutant, the amount of 9-HPOD that is formed increases. This result has been interpreted using the head-first binding model in which the smaller valine residue allows linoleate to bind with the polar carboxylate group of linoleate interacting with arginine-707. The work presented in this thesis confirms the regiochemical results of the previous work and further tests the head-first binding model. If head-first binding occurs, the 9-HPOD is expected to have primarily S configuration. Utilizing chiral-phase HPLC, it was found that the 9-HPOD produced by the phe557val mutant SBLO-1 is primarily S, consistent with head-first binding. The head-first binding model was also tested using linoleyl dimethylamine (LDMA), which has been shown to be a good substrate for SBLO-1 at pH 7.0, where LDMA is thought to be positively charged. This model predicts that less of the 9-peroxide should be produced with this substrate. Through the use of gas chromatography/mass spectrometry, it was found that the conversion of LDMA by the phe557val mutant SBLO-1 resulted in the formation of a 46:54 mixture of the 13-peroxide:9-peroxide. The higher amount of 9-peroxide is the opposite of what is expected for the currently proposed model suggesting that the proposed model may not be entirely correct. The results thus far have been consistent with reverse binding but not with the proposed interaction of the polar end of the substrate with arginine-707.