2 resultados para HIGH-ALTITUDE EXPOSURE
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
We tested the hypothesis that excess saturated fat consumption during pregnancy, lactation, and/or postweaning alters the expression of genes mediating hippocampal synaptic efficacy and impairs spatial learning and memory in adulthood. Dams were fed control chow or a diet high in saturated fat before mating, during pregnancy, and into lactation. Offspring were weaned to either standard chow or a diet high in saturated fat. The Morris Water Maze was used to evaluate spatial learning and memory. Open field testing was used to evaluate motor activity. Hippocampal gene expression in adult males was measured using RT-PCR and ELISA. Offspring from high fat-fed dams took longer, swam farther, and faster to try and find the hidden platform during the 5-day learning period. Control offspring consuming standard chow spent the most time in memory quadrant during the probe test. Offspring from high fat-fed dams consuming excess saturated fat spent the least. The levels of mRNA and protein for brain-derived neurotrophic factor and activity-regulated cytoskeletal-associated protein were significantly decreased by maternal diet effects. Nerve growth factor mRNA and protein levels were significantly reduced in response to both maternal and postweaning high-fat diets. Expression levels for the N-methyl-D-aspartate receptor (NMDA) receptor subunit NR2B as well as synaptophysin were significantly decreased in response to both maternal and postweaning diets. Synaptotagmin was significantly increased in offspring from high fat-fed dams. These data support the hypothesis that exposure to excess saturated fat during hippocampal development is associated with complex patterns of gene expression and deficits in learning and memory.
Resumo:
Paleogene sedimentary rocks of the Arkose Ridge Formation (Talkeetna Mountains, Alaska) preserve a record of a fluvial-lacustrine depositional environment and its forested ecosystem in an active basin among the convergent margin tectonic processes that shaped southern Alaska. An -800 m measured succession at Box Canyon indicates braid-plain deposition with predominantly gravelly deposits low in the exposure to sandy and muddy facies associations below an overlying lava flow sequence. U-Pb geochronology on zircons from a tuff and a sandstone within the measured section, as well as an Ar/Ar date from the overlying lava constrain the age of the sedimentary succession to between similar to 59 Ma and 48 Ma Fossil plant remains occur throughout the Arkose Ridge Formation as poorly-preserved coalified woody debris and fragmentary leaf impressions. At Box Canyon, however, a thin la-custrine depositional lens of rhythmically laminated mudrocks yielded fish fossils and a well-preserved floral assemblage including foliage and reproductive organs representing conifers, sphenopsids, monocots, and dicots. Leaf physiognomic methods to estimate paleoclimate were applied to the dicot leaf collection and indicate warm temperate paleotemperatures (-11-15 +/- -4 degrees C MAT) and elevated paleoprecipitation (-120 cm/yr MAP) estimates as compared to modem conditions; results that are parallel with previously published estimates from the partly coeval Chickaloon Formation deposited in more distal depositional environments in the same basin. The low abundance of leaf herbivory in the Box Canyon dicot assemblage (-9% of leaves damaged) is also similar to the results from assemblages in the meander-plain depositional systems of the Chickaloon. This new suite of data informs models of the tectonostratigraphic evolution of southern Alaska and the developing understanding of terrestrial paleoecology and paleoclimate at high latitudes during the Late Paleocene-Early Eocene greenhouse climate phase. (c) 2014 Elsevier B.V. All rights reserved.