2 resultados para HEURISTIC-SEARCH APPROACH
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
A central design challenge facing network planners is how to select a cost-effective network configuration that can provide uninterrupted service despite edge failures. In this paper, we study the Survivable Network Design (SND) problem, a core model underlying the design of such resilient networks that incorporates complex cost and connectivity trade-offs. Given an undirected graph with specified edge costs and (integer) connectivity requirements between pairs of nodes, the SND problem seeks the minimum cost set of edges that interconnects each node pair with at least as many edge-disjoint paths as the connectivity requirement of the nodes. We develop a hierarchical approach for solving the problem that integrates ideas from decomposition, tabu search, randomization, and optimization. The approach decomposes the SND problem into two subproblems, Backbone design and Access design, and uses an iterative multi-stage method for solving the SND problem in a hierarchical fashion. Since both subproblems are NP-hard, we develop effective optimization-based tabu search strategies that balance intensification and diversification to identify near-optimal solutions. To initiate this method, we develop two heuristic procedures that can yield good starting points. We test the combined approach on large-scale SND instances, and empirically assess the quality of the solutions vis-à-vis optimal values or lower bounds. On average, our hierarchical solution approach generates solutions within 2.7% of optimality even for very large problems (that cannot be solved using exact methods), and our results demonstrate that the performance of the method is robust for a variety of problems with different size and connectivity characteristics.
Resumo:
In 2011, researchers at Bucknell University and Illinois Wesleyan University compared the search efficacy of Serial Solutions Summon, EBSCO Discovery Service, Google Scholar and conventional library databases. Using a mixed-methods approach, qualitative and quantitative data was gathered on students’ usage of these tools. Regardless of the search system, students exhibited a marked inability to effectively evaluate sources and a heavy reliance on default search settings. On the quantitative benchmarks measured by this study, the EBSCO Discovery Service tool outperformed the other search systems in almost every category. This article describes these results and makes recommendations for libraries considering these tools.