3 resultados para Group interaction

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examined how ingroup status affects the tendency for people to internalize ingroup stereotypes (i.e. self-stereotype) when expecting to interact with another individual who holds stereotypic views of them. Past research has demonstrated that people self-stereotype when they want to affiliate with another individual who holds stereotypic views of them. By self-stereotyping, individuals create a common bond or shared set of beliefs with the other individual. This line of research has not yet examinedif there are any moderators in the relationship between affiliation motivation and self-stereotyping. However, there is reason to believe that members of lower-status groups are more likely to feel the need to create this common bond through self-stereotyping because 1) they identify more closely with their social group, 2) their group identity is more salient 3) they are more aware of the expectations of others, 4) and they care more about the quality of an interaction with a member from a higher-status group. For this experiment, I recruited twenty-seven members of Alpha Chi Omega andtwenty-eight members of Delta Gamma, two sororities that are perceived to be middle-ranked (as determined by a pre-test survey). Upon arriving to the study, half the participants were informed that they would be interacting with a member of Kappa Kappa Gamma, a higher-ranked sorority (as determined by a pre-test survey) and half the participants were informed that they would be interacting with a member of a Chi Omega, a lower-ranked sorority (as determined by a pre-test survey). Participants were also informed that this partner held stereotypic views of their (i.e. the participant’s)sorority. After, participants were given the Self-Stereotyping Measure in which they rated how well sixteen characteristics described themselves. The results of the series of analyses performed on participants’ ratings on the Self-Stereotyping Measure indicated that when expecting to interact with another individual, members of low-status groups self-stereotype more than members of high-statusgroups and those who do not expect to interact. Furthermore, unexpectedly, among members of high-status groups, those who expected to interact with a member of a low-status group self-stereotyped less than those who did not expect to interact. Thus, this research provides support for the hypothesis that group status is a moderator in the relationship between self-stereotyping and affiliation motivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As lightweight and slender structural elements are more frequently used in the design, large scale structures become more flexible and susceptible to excessive vibrations. To ensure the functionality of the structure, dynamic properties of the occupied structure need to be estimated during the design phase. Traditional analysis method models occupants simply as an additional mass; however, research has shown that human occupants could be better modeled as an additional degree-of- freedom. In the United Kingdom, active and passive crowd models are proposed by the Joint Working Group as a result of a series of analytical and experimental research. It is expected that the crowd models would yield a more accurate estimation to the dynamic response of the occupied structure. However, experimental testing recently conducted through a graduate student project at Bucknell University indicated that the proposed passive crowd model might be inaccurate in representing the impact on the structure from the occupants. The objective of this study is to provide an assessment of the validity of the crowd models proposed by JWG through comparing the dynamic properties obtained from experimental testing data and analytical modeling results. The experimental data used in this study was collected by Firman in 2010. The analytical results were obtained by performing a time-history analysis on a finite element model of the occupied structure. The crowd models were created based on the recommendations from the JWG combined with the physical properties of the occupants during the experimental study. During this study, SAP2000 was used to create the finite element models and to implement the analysis; Matlab and ME¿scope were used to obtain the dynamic properties of the structure through processing the time-history analysis results from SAP2000. The result of this study indicates that the active crowd model could quite accurately represent the impact on the structure from occupants standing with bent knees while the passive crowd model could not properly simulate the dynamic response of the structure when occupants were standing straight or sitting on the structure. Future work related to this study involves improving the passive crowd model and evaluating the crowd models with full-scale structure models and operating data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibration serviceability is a widely recognized design criterion for assembly-type structures, such as stadiums, that are likely subjected to rhythmic human-induced excitation. Human-induced excitation of a structure occurs from the movement of the occupants such as walking, running, jumping, or dancing. Vibration serviceability is based on the level of comfort that people have with the vibrations of a structure. Current design guidance uses the natural frequency of the structure to assess vibration serviceability. However, a phenomenon known as human-structure interaction suggests that there is a dynamic interaction between the structure and passive occupants, altering the natural frequency of the system. Human-structure interaction is dependent on many factors, including the dynamic properties of the structure, posture of the occupants, and relative size of the crowd. It is unknown if the shift in natural frequency due to humanstructure interaction is significant enough to warrant consideration in the design process. This study explores the interface of both structural and crowd characteristics through experimental testing to determine if human-structure interaction should be considered because of its potential impact on serviceability assessment. An experimental test structure that represents the dynamic properties of a cantilevered stadium structure was designed and constructed. Experimental modal analysis was implemented to determine the dynamic properties of the empty test structure and when occupied with up to seven people arranged in different locations and postures. Comparisons of the dynamic properties were made between the empty and occupied testing configurations and analytical results from the use of a dynamic crowd model recommended from the Joint Working Group of Europe. Data trends lead to the development of a refined dynamic crowd model. This dynamic model can be used in conjunction with a finite element model of the test structure to estimate the dynamic influence due to human-structure interaction due to occupants standing with straight knees. In the future, the crowd model will be refined and can aid in assessing the dynamic properties of in-service stadium structures.