2 resultados para Greenhouse effect, Atmospheric

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Utilization of biogas can provide a source of renewable energy in both heat and power generation. Combustion of biogas in land-based gas turbines for power generation is a promising approach to reducing greenhouse gases and US dependence on foreign-source fossil fuels. Biogas is a byproduct from the decomposition of organic matter and consists primarily of CH4 and large amounts of CO2. The focus of this research was to design a combustion device and investigate the effects of increasing levels of CO2 addition to the combustion of pure CH4 with air. Using an atmospheric-pressure, swirl-stabilized dump combustor, emissions data and flame stability limitations were measured and analyzed. In particular, CO2, CO, and NOx emissions were the main focus of the combustion products. Additionally, the occurrence of lean blowout and combustion pressure oscillations, which impose significant limitations in operation ranges for actual gas turbines, was observed. Preliminary kinetic and equilibrium modeling was performed using Cantera and CEA for the CH4/CO2/Air combustion systems to analyze the effect of CO2 upon adiabatic flame temperature and emission levels. The numerical and experimental results show similar dependence of emissions on equivalence ratio, CO2 addition, inlet air temperature, and combustor residence time. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon dioxide (CO2) has been of recent interest due to the issue of greenhouse cooling in the upper atmosphere by species such as CO2 and NO. In the Earth’s upper atmosphere, between altitudes of 75 and 110 km, a collisional energy exchange occurs between CO2 and atomic oxygen, which promotes a population of ground state CO2 to the bend excited state. The relaxation of CO2 following this excitation is characterized by spontaneous emission of 15-μm. Most of this energy is emitted away from Earth. Due to the low density in the upper atmosphere, most of this energy is not reabsorbed and thus escapes into space, leading to a local cooling effect in the upper atmosphere. To determine the efficiency of the CO2- O atom collisional energy exchange, transient diode laser absorption spectroscopy was used to monitor the population of the first vibrationally excited state, 13CO2(0110) or ν2, as a function of time. The rate coefficient, kO(ν2), for the vibrational relaxation 13CO2 (ν2)-O was determined by fitting laboratory measurements using a home-written linear least squares algorithm. The rate coefficient, kO(ν2), of the vibrational relaxation of 13CO2(ν2), by atomic oxygen at room temperature was determined to be (1.6 ± 0.3 x 10-12 cm3 s-1), which is within the uncertainty of the rate coefficient previously found in this group for 12CO2(ν2) relaxation. The cold temperature kO(ν2) values were determined to be: (2.1 ± 0.8) x 10-12 cm3 s-1 at Tfinal = 274 K, (1.8 ± 0.3) x 10-12 cm3 s-1 at Tfinal = 239 K, (2 ± 1) x 10-12 cm3 s-1 at Tfinal = 208 K, and (1.7 ± 0.3) x 10-12 cm3 s-1 at Tfinal = 186 K. These data did not show a definitive negative temperature dependence comparable to that found for 12CO2 previously.