2 resultados para Green Fluorescent Protein

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine the subcellular localization of the tegument proteins pp65, pp71, pp150, and pp28 as fusions to one of several fluorescent proteins. Since these tegument proteins play pivotal roles in several stages of the viral life cycle, knowledge of where and the mechanism of how these proteins localize upon release could result in a better understanding of their function during a lytic infection as well as assist in the development of an effective, novel antiviral treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The TM0727 gene of Thermotoga maritima is responsible for encoding what has been reported to be a modulator of DNA gyrase (pmbA). Although the function of pmbA is still unknown, it is believedto be involved in cell division, carbon storage regulation, and the synthesis of the antibiotic peptide microcin B17. It is suggested that it serves together with tldD, a known zinc dependent protease, tomodulate DNA gyrase. TM0727 is believed to be a zinc dependent protease that binds zinc in the central active site of the molecule, located between two equivalent monomeric units. However, thecrystal structure determined by Wilson et al. (2005) did not contain zinc. It therefore remains to be seen if TM0727 requires zinc for activity, or regulation, and if the protein is indeed a protease. To begin studying this protein, the gene was expressed in BL21(DE3) pLysS cells and the induction time was optimized. Using affinity and ion exchange chromatography, the protein has been successfully purified. The purification procedure can be replicated to obtain sufficient protein for characterization. Purification results show that the protein loses stability after 24 hours and remains stable under an imidazole-free lysis workup. Preliminary characterization of TM0727 has focused on understanding the protein’s structuralproperties through tryptophan fluorescence anisotropy measurements. The four tryptophan residues located within the TM0727 dimer fluoresce at different maximum wavelengths and with differentintensities upon excitation with 295nm light. These emission properties are highly sensitive to the environment (solvent, surrounding residues) of each tryptophan residue. The low number oftryptophans allows for a specific monitoring of the protein’s structure as it denatures. As more denaturant is added to the protein, its tryptophan environments have clearly altered. This is indicative of unfolding and increased solvent exposure of the protein. This unfolding has been confirmed with the addition of a fluorescent quencher. Additionally, fluorescence anisotropy measurements have been carried out on the protein to gain a preliminary understanding of the rotational dynamics of the tryptophan residues. These experiments excite the tryptophan residues within the sample using a polarized light source. Polarized emission is then detected, the degree of which depends on the rotational dynamics and local environment of the tryptophan residues. The protein was denatured and the changes in emission were recorded to detect these structural changes. Results have shown a large change in quaternary structure, consistent with a dimer to monomer transition, occurs at 1.5M Guandidine HCl. There has also been an examination of the crystal structure for the location of a potential active site. The inner cavity of the protein was inspected visually to locate a potential location for a catalytic triad, specifically the amino acids found in the active sites of serine, cyteine, and aspartateproteases. It was found that a potential aspartic protease active site may be located between the Asparate286 and Aspartate287 residues. Further investigation is warranted to test this remotepossibility.