3 resultados para Glucocorticoid-remediable aldosteronism

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Telomeres are protective structures at the ends of eukaryotic chromosomes. The loss of telomeres through cell division and oxidative stress is related to cellular aging, organismal growth and disease. In this way, telomeres link molecular and cellular mechanisms with organismal processes, and may explain variation in a number of important life-history traits. Here, we discuss how telomere biology relates to the study of physiological ecology and life history evolution. We emphasize current knowledge on how telomeres may relate to growth, survival and lifespan in natural populations. We finish by examining interesting new connections between telomeres and the glucocorticoid stress response. Glucocorticoids are often employed as indices of physiological condition, and there is evidence that the glucocorticoid stress response is adaptive. We suggest that one way that glucocorticoids impact organismal survival is through elevated oxidative stress and telomere loss. Future work needs to establish and explore the link between the glucocorticoid stress response and telomere shortening in natural populations. If a link is found, it provides an explanatory mechanism by which environmental perturbation impacts life history trajectories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early embryonic exposure to maternal glucocorticoids can broadly impact physiology and behaviour across phylogenetically diverse taxa. The transfer of maternal glucocorticoids to offspring may be an inevitable cost associated with poor environmental conditions, or serve as a maternal effect that alters offspring phenotype in preparation for a stressful environment. Regardless, maternal glucocorticoids are likely to have both costs and benefits that are paid and collected over different developmental time periods. We manipulated yolk corticosterone (cort) in domestic chickens (Gallus domesticus) to examine the potential impacts of embryonic exposure to maternal stress on the juvenile stress response and cellular ageing. Here, we report that juveniles exposed to experimentally increased cort in ovo had a protracted decline in cort during the recovery phase of the stress response. All birds, regardless of treatment group, shifted to oxidative stress during an acute stress response. In addition, embryonic exposure to cort resulted in higher levels of reactive oxygen metabolites and an over-representation of short telomeres compared with the control birds. In many species, individuals with higher levels of oxidative stress and shorter telomeres have the poorest survival prospects. Given this, long-term costs of glucocorticoid-induced phenotypes may include accelerated ageing and increased mortality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main activation route for the stress response is the hypothalamo-pituitaryadrenal axis (HPA) and the sympatho-adrenomedullary system. The HPA axis is a neuroendocrine feedback loop mediated by an array of tissue specific hormones, receptors and neurotransmitters that regulate glucocorticoid (GC) release. GCs are steroidal hormones produced by the adrenal glands and are key players in a negativefeedback loop controlling HPA activity. They influence the HPA axis through glucocorticoid receptors in the hypothalamus and pituitary and through both glucocorticoid (GR) and mineralcorticoid receptors (MR) that are co-localized in the hippocampus. Repeated or chronic stress exerts a negative influence on these HPA axis regulatory sites and contributes to potentially pathological conditions, especially during early development. For example, chronic stress promotes increased maternal adrenal gland secretion of glucocortiocoid, leading to abnormally high concentrations of GC inthe fetal environment. The timing and maturation of the HPA axis relative to birth is highly species specific and is closely linked to landmarks in fetal development. In rats this development of the HPA axis takes place in utero and continues even shortly after birth. It is likely that the maternal endocrine environment will affect fetal development during this critical time point and may alter the overall set point for the expression ofgenes and their protein products that mediate fetal HPA axis function. Dexamethasone (DEX) is a synthetic glucocorticoid (sGC) and is a consensus treatment in preterm pregnancies used to expedite fetal lung development. However it has been shown that DEX causes long term physiological and behavioral disorders in prenatally-exposed laboratory animals. Previous studies have also shown that it alters the MR: GR receptor ratio in the hippocampus. Taking into consideration corticosteroid regulation of serotonin receptors, especially 5HT1A receptors and their putative interaction with glucocorticoid receptors in the hippocampus, we hypothesized that prenatal DEX exposure would lead to changes in the expression and function of 5HT1A receptors in the hippocampus. We administered DEX to rat dams during the last trimester of gestation and investigated the changes in these receptors in the adult rat offspring. Radioligand receptor binding assays were used to study hippocampal 5HT1A receptor binding affinity and number. Our results demonstrate that hippocampal 5HT1A receptors are increased in the DEX animalscompared with controls by 36%, with no change in binding affinity. The efficiency of ligand-induced receptor signal transduction via G-protein activation was also studied using [35S]GTPγS incorporation assay. Using this technique, we showed that there was no significant difference in the maximum ligand mediated stimulation (Emax) of 5HT1Areceptors between control and dex exposed animals. However, the intracellular signalling efficiency of hippocampal 5HT1A receptors was diminished, since a significant increase in EC50 values was obtained with the dex exposed group showing a value 51% higherEC50 than controls. Taken together these data illustrate a considerable change in the 5HT1A component of the serotonergic system following prenatal DEX exposure.