6 resultados para Gaussian Mixture Model
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
The Gaussian-3 method developed by Pople and coworkers has been used to calculate the free energy of neutral octamer clusters of water, (H2O)8. The most energetically stable structures are in excellent agreement with those determined from experiment and those predicted from previous high-level calculations. Cubic structures are favored over noncubic structures over all temperature ranges studied. The D2d cubic structure is the lowest free energy structure and dominates the potential energy and free energy hypersurfaces from 0 K to 298 K.
Resumo:
We present a new approach for corpus-based speech enhancement that significantly improves over a method published by Xiao and Nickel in 2010. Corpus-based enhancement systems do not merely filter an incoming noisy signal, but resynthesize its speech content via an inventory of pre-recorded clean signals. The goal of the procedure is to perceptually improve the sound of speech signals in background noise. The proposed new method modifies Xiao's method in four significant ways. Firstly, it employs a Gaussian mixture model (GMM) instead of a vector quantizer in the phoneme recognition front-end. Secondly, the state decoding of the recognition stage is supported with an uncertainty modeling technique. With the GMM and the uncertainty modeling it is possible to eliminate the need for noise dependent system training. Thirdly, the post-processing of the original method via sinusoidal modeling is replaced with a powerful cepstral smoothing operation. And lastly, due to the improvements of these modifications, it is possible to extend the operational bandwidth of the procedure from 4 kHz to 8 kHz. The performance of the proposed method was evaluated across different noise types and different signal-to-noise ratios. The new method was able to significantly outperform traditional methods, including the one by Xiao and Nickel, in terms of PESQ scores and other objective quality measures. Results of subjective CMOS tests over a smaller set of test samples support our claims.
Resumo:
The Gaussian-2, Gaussian-3, complete basis set- (CBS-) QB3, and CBS-APNO methods have been used to calculate ΔH° and ΔG° values for neutral clusters of water, (H2O)n, where n = 2−6. The structures are similar to those determined from experiment and from previous high-level calculations. The thermodynamic calculations by the G2, G3, and CBS-APNO methods compare well against the estimated MP2(CBS) limit. The cyclic pentamer and hexamer structures release the most heat per hydrogen bond formed of any of the clusters. While the cage and prism forms of the hexamer are the lowest energy structures at very low temperatures, as temperature is increased the cyclic structure is favored. The free energies of cluster formation at different temperatures reveal interesting insights, the most striking being that the cyclic trimer, cyclic tetramer, and cyclic pentamer, like the dimer, should be detectable in the lower troposphere. We predict water dimer concentrations of 9 × 1014 molecules/cm3, water trimer concentrations of 2.6 × 1012 molecules/cm3, tetramer concentrations of approximately 5.8 × 1011 molecules/cm3, and pentamer concentrations of approximately 3.5 × 1010 molecules/cm3 in saturated air at 298 K. These results have important implications for understanding the gas-phase chemistry of the lower troposphere.
Resumo:
The Gaussian-2, Gaussian-3, Complete Basis Set-QB3, and Complete Basis Set-APNO methods have been used to calculate geometries of neutral clusters of water, (H2O)n, where n = 2–6. The structures are in excellent agreement with those determined from experiment and those predicted from previous high-level calculations. These methods also provide excellent thermochemical predictions for water clusters, and thus can be used with confidence in evaluating the structures and thermochemistry of water clusters.
Resumo:
Complete basis set and Gaussian-n methods were combined with Barone and Cossi's implementation of the polarizable conductor model (CPCM) continuum solvation methods to calculate pKa values for six carboxylic acids. Four different thermodynamic cycles were considered in this work. An experimental value of −264.61 kcal/mol for the free energy of solvation of H+, ΔGs(H+), was combined with a value for Ggas(H+) of −6.28 kcal/mol, to calculate pKa values with cycle 1. The complete basis set gas-phase methods used to calculate gas-phase free energies are very accurate, with mean unsigned errors of 0.3 kcal/mol and standard deviations of 0.4 kcal/mol. The CPCM solvation calculations used to calculate condensed-phase free energies are slightly less accurate than the gas-phase models, and the best method has a mean unsigned error and standard deviation of 0.4 and 0.5 kcal/mol, respectively. Thermodynamic cycles that include an explicit water in the cycle are not accurate when the free energy of solvation of a water molecule is used, but appear to become accurate when the experimental free energy of vaporization of water is used. This apparent improvement is an artifact of the standard state used in the calculation. Geometry relaxation in solution does not improve the results when using these later cycles. The use of cycle 1 and the complete basis set models combined with the CPCM solvation methods yielded pKa values accurate to less than half a pKa unit. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001
Resumo:
The PM3 semiempirical quantum-mechanical method was found to systematically describe intermolecular hydrogen bonding in small polar molecules. PM3 shows charge transfer from the donor to acceptor molecules on the order of 0.02-0.06 units of charge when strong hydrogen bonds are formed. The PM3 method is predictive; calculated hydrogen bond energies with an absolute magnitude greater than 2 kcal mol-' suggest that the global minimum is a hydrogen bonded complex; absolute energies less than 2 kcal mol-' imply that other van der Waals complexes are more stable. The geometries of the PM3 hydrogen bonded complexes agree with high-resolution spectroscopic observations, gas electron diffraction data, and high-level ab initio calculations. The main limitations in the PM3 method are the underestimation of hydrogen bond lengths by 0.1-0.2 for some systems and the underestimation of reliable experimental hydrogen bond energies by approximately 1-2 kcal mol-l. The PM3 method predicts that ammonia is a good hydrogen bond acceptor and a poor hydrogen donor when interacting with neutral molecules. Electronegativity differences between F, N, and 0 predict that donor strength follows the order F > 0 > N and acceptor strength follows the order N > 0 > F. In the calculations presented in this article, the PM3 method mirrors these electronegativity differences, predicting the F-H- - -N bond to be the strongest and the N-H- - -F bond the weakest. It appears that the PM3 Hamiltonian is able to model hydrogen bonding because of the reduction of two-center repulsive forces brought about by the parameterization of the Gaussian core-core interactions. The ability of the PM3 method to model intermolecular hydrogen bonding means reasonably accurate quantum-mechanical calculations can be applied to small biologic systems.