7 resultados para Functions of covariance

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a homogeneously driven granular fluid of hard spheres at intermediate volume fractions and focus on time-delayed correlation functions in the stationary state. Inelastic collisions are modeled by incomplete normal restitution, allowing for efficient simulations with an event-driven algorithm. The incoherent scattering function Fincoh(q,t ) is seen to follow time-density superposition with a relaxation time that increases significantly as the volume fraction increases. The statistics of particle displacements is approximately Gaussian. For the coherent scattering function S(q,ω), we compare our results to the predictions of generalized fluctuating hydrodynamics, which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. For sufficiently small wave number q we observe sound waves in the coherent scattering function S(q,ω) and the longitudinal current correlation function Cl(q,ω). We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nature of vibrational anharmonicity has been examined for the case of small water clusters using second-order vibrational perturbation theory (VPT2) applied on second-order Møller–Plesset perturbation theory (MP2) potential energy surfaces. Using a training set of 16 water clusters (H2O)n=2–6,8,9 with a total of 723 vibrational modes, we determined scaling factors that map the harmonic frequencies onto anharmonic ones. The intermolecular modes were found to be substantially more anharmonic than intramolecular bending and stretching modes. Due to the varying levels of anharmonicity of the intermolecular and intramolecular modes, different frequency scaling factors for each region were necessary to achieve the highest accuracy. Furthermore, new scaling factors for zero-point vibrational energies (ZPVE) and vibrational corrections to the enthalpy (ΔHvib) and the entropy (Svib) have been determined. All the scaling factors reported in this study are different from previous works in that they are intended for hydrogen-bonded systems, while others were built using experimental frequencies of covalently bonded systems. An application of our scaling factors to the vibrational frequencies of water dimer and thermodynamic functions of 11 larger water clusters highlights the importance of anharmonic effects in hydrogen-bonded systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nature of vibrational anharmonicity has been examined for the case of small water clusters using second-order vibrational perturbation theory (VPT2) applied on second-order Møller–Plesset perturbation theory (MP2) potential energy surfaces. Using a training set of 16 water clusters (H2O)n=2–6,8,9 with a total of 723 vibrational modes, we determined scaling factors that map the harmonic frequencies onto anharmonic ones. The intermolecular modes were found to be substantially more anharmonic than intramolecular bending and stretching modes. Due to the varying levels of anharmonicity of the intermolecular and intramolecular modes, different frequency scaling factors for each region were necessary to achieve the highest accuracy. Furthermore, new scaling factors for zero-point vibrational energies (ZPVE) and vibrational corrections to the enthalpy (ΔHvib) and the entropy (Svib) have been determined. All the scaling factors reported in this study are different from previous works in that they are intended for hydrogen-bonded systems, while others were built using experimental frequencies of covalently bonded systems. An application of our scaling factors to the vibrational frequencies of water dimer and thermodynamic functions of 11 larger water clusters highlights the importance of anharmonic effects in hydrogen-bonded systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Rankin convolution type Dirichlet series D-F,D-G(s) of Siegel modular forms F and G of degree two, which was introduced by Kohnen and the second author, is computed numerically for various F and G. In particular, we prove that the series D-F,D-G(s), which shares the same functional equation and analytic behavior with the spinor L-functions of eigenforms of the same weight are not linear combinations of those. In order to conduct these experiments a numerical method to compute the Petersson scalar products of Jacobi Forms is developed and discussed in detail.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper estimates cost functions for both municipal solid waste collection and disposal services and curbside recycling programs. Cost data are obtained from a national survey of randomly selected municipalities. Results suggest, perhaps unsurprisingly, that both marginal and average costs of recycling systems exceed those of waste collection and disposal systems. Economies of scale are estimated for all observed quantities of waste collection and disposal. Economies of scale for recycling disappear at high levels of recycling - marginal and average cost curves for recycling take on the usual U-shape. Waste and recycling costs are also estimated as functions of factor costs and program attributes.