5 resultados para Finite Simple Groups
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Let G be a locally finite group satisfying the condition given in the title and suppose that G is not nilpotent-by-Chernikov. It is shown that G has a section S that is not nilpotent-by-Chernikov, where S is either a p-group or a semi-direct product of the additive group A of a locally finite field F by a subgroup K of the multiplicative group of F, where K acts by multiplication on A and generates F as a ring. Non-(nilpotent-by-Chernikov) extensions of this latter kind exist and are described in detail.
Resumo:
When particle flux is regulated by multiple factors such as particle supply and varying transport rate, it is important to identify the respective dominant regimes. We extend the well-studied totally asymmetric simple exclusion model to investigate the interplay between a controlled entrance and a local defect site. The model mimics cellular transport phenomena where there is typically a finite particle pool and nonuniform moving rates due to biochemical kinetics. Our simulations reveal regions where, despite an increasing particle supply, the current remains constant while particles redistribute in the system. Exploiting a domain wall approach with mean-field approximation, we provide a theoretical ground for our findings. The results in steady-state current and density profiles provide quantitative insights into the regulation of the transcription and translation process in bacterial protein synthesis.
Resumo:
It is shown that if G is a hypercentral group with all subgroups subnormal, and if the torsion subgroup of G is a pi-group for some finite set pi of primes, then G is nilpotent. In the case where G is not hypercentral there is a section of G that is much like one of the well-known Heineken-Mohamed groups. It is also shown that if G is a residually nilpotent group with all subgroups subnormal whose torsion subgroup satisfies the above condition then G is nilpotent.
Resumo:
The structure of groups which have at most two isomorphism classes of derived subgroups (D-2-groups) is investigated. A complete description of D-2-groups is obtained in the case where the derived subgroup is finite: the solution leads an interesting number theoretic problem. In addition, detailed information is obtained about soluble D-2-groups, especially those with finite rank, where algebraic number fields play an important role. Also, detailed structural information about insoluble D-2-groups is found, and the locally free D-2-groups are characterized.
Resumo:
Passive states of quantum systems are states from which no system energy can be extracted by any cyclic (unitary) process. Gibbs states of all temperatures are passive. Strong local (SL) passive states are defined to allow any general quantum operation, but the operation is required to be local, being applied only to a specific subsystem. Any mixture of eigenstates in a system-dependent neighborhood of a nondegenerate entangled ground state is found to be SL passive. In particular, Gibbs states are SL passive with respect to a subsystem only at or below a critical system-dependent temperature. SL passivity is associated in many-body systems with the presence of ground state entanglement in a way suggestive of collective quantum phenomena such as quantum phase transitions, superconductivity, and the quantum Hall effect. The presence of SL passivity is detailed for some simple spin systems where it is found that SL passivity is neither confined to systems of only a few particles nor limited to the near vicinity of the ground state.