3 resultados para Fiber reinforced plastics - Mechanical properties
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
In recent years, layered manufacturing (LM) processes have begun to progress from rapid prototyping techniques towards rapid manufacturing methods, where the objective is now to produce finished components for potential end use in a product (Caulfield et al., 2007). LM is especially promising for the fabrication of specific need, low volume products such as replacement parts for larger systems. This trend accentuates the need for a thorough understanding of the associated mechanical properties and the resulting behavior of parts produced by layered methods. Not only must the base material be durable, but the mechanical properties of the layered components must be sufficient to meet in-service loading and operational requirements, and be reasonably comparable to parts produced by more traditional manufacturing techniques. This chapter presents the details of a study completed to quantitatively analyze the potential of fused deposition modelling to fully evolve into a rapid manufacturing tool. The project objective is to develop an understanding of the dependence of the mechanical properties of FDM parts on raster orientation and to assess whether these parts are capable of maintaining their integrity while under service loading. The study examines the effect of fiber orientation, i.e. the direction of the polymer beads relative to the loading direction of the part, on a variety of important mechanical properties of ABS components fabricated by fused deposition modeling. Tensile, compressive, flexural, impact, and fatigue strength properties of FDM specimens are examined, evaluated, and placed in context in comparison with the properties of injection molded ABS parts.
Resumo:
Aluminum coatings were applied to 2024-T3 and 7075-T6 aluminum alloys via the Cold Spray process. The coatings were applied to substrateswith various surface preparation and Cold Spray carrier gas combinations. Some samples were coated with an additional sealant with and without a chromate conversion layer. An exhaustive corrosion analysis was then performed which utilized a number of long termand accelerated tests in order to characterize the corrosion protection of the coatings.
Resumo:
The mechanical properties of cytoskeletal networks are intimately involved in determining how forces and cellular processes are generated, directed, and transmitted in living cells. However, determining the mechanical properties of subcellular molecular complexes in vivo has proven to be difficult. Here, we combine in vivo measurements by optical microscopy, X-ray diffraction, and transmission electron microscopy with theoretical modeling to decipher the mechanical properties of the magnetosome chain system encountered in magnetotactic bacteria. We exploit the magnetic properties of the endogenous intracellular nanoparticles to apply a force on the filament-connector pair involved in the backbone formation and stabilization. We show that the magnetosome chain can be broken by the application of external field strength higher than 30 mT and suggest that this originates from the rupture of the magnetosome connector MamJ. In addition, we calculate that the biological determinants can withstand in vivo a force of 25 pN. This quantitative understanding provides insights for the design of functional materials such as actuators and sensors using cellular components.