5 resultados para FRONTAL LOBE EPILEPSY

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study used positron emission tomography (PET) to examine the cerebral activity pattern associated with auditory imagery forfamiliar tunes. Subjects either imagined the continuation of nonverbaltunes cued by their first few notes, listened to a short sequence of notesas a control task, or listened and then reimagined that short sequence. Subtraction of the activation in the control task from that in the real-tune imagery task revealed primarily right-sided activation in frontal and superior temporal regions, plus supplementary motor area(SMA). Isolating retrieval of the real tunes by subtracting activation in the reimagine task from that in the real-tune imagery task revealedactivation primarily in right frontal areas and right superior temporal gyrus. Subtraction of activation in the control condition from that in the reimagine condition, intended to capture imagery of unfamiliarsequences, revealed activation in SMA, plus some left frontal regions. We conclude that areas of right auditory association cortex, together with right and left frontal cortices, are implicated in imagery for familiartunes, in accord with previous behavioral, lesion and PET data. Retrieval from musical semantic memory is mediated by structures in the right frontal lobe, in contrast to results from previous studies implicating left frontal areas for all semantic retrieval. The SMA seems to be involved specifically in image generation, implicating a motor code in this process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study used positron emission tomography (PET) to examine the cerebral activity pattern associated with auditory imagery for familiar tunes. Subjects either imagined the continuation of nonverbal tunes cued by their first few notes, listened to a short sequence of notes as a control task, or listened and then reimagined that short sequence. Subtraction of the activation in the control task from that in the real-tune imagery task revealed primarily right-sided activation in frontal and superior temporal regions, plus supplementary motor area (SMA). Isolating retrieval of the real tunes by subtracting activation in the reimagine task from that in the real-tune imagery task revealed activation primarily in right frontal areas and right superior temporal gyrus. Subtraction of activation in the control condition from that in the reimagine condition, intended to capture imagery of unfamiliar sequences, revealed activation in SMA, plus some left frontal regions. We conclude that areas of right auditory association cortex, together with right and left frontal cortices, are implicated in imagery for familiar tunes, in accord with previous behavioral, lesion and PET data. Retrieval from musical semantic memory is mediated by structures in the right frontal lobe, in contrast to results from previous studies implicating left frontal areas for all semantic retrieval. The SMA seems to be involved specifically in image generation, implicating a motor code in this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auditory imagery for songs was studied in two groups of patients with left or right temporal-lobe excision for control of epilepsy, and a group of matched normal control subjects. Two tasks were used. In the perceptual task, subjects saw the text of a familiar song and simultaneously heard it sung. On each trial they judged if the second of two capitalized lyrics was higher or lower in pitch than the first. The imagery task was identical in all respects except that no song was presented, so that subjects had to generate an auditory image of the song. The results indicated that all subjects found the imagery task more difficult than the perceptual task, but patients with right temporal-lobe damage performed significantly worse on both tasks than either patients with left temporal-lobe lesions or normal control subjects. These results support the idea that imagery arises from activation of a neural substrate shared with perceptual mechanisms, and provides evidence for a right temporal- lobe specialization for this type of auditory imaginal processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two fMRI experiments explored the neural substrates of a musical imagery task that required manipulation of the imagined sounds: temporal reversal of a melody. Musicians were presented with the first few notes of a familiar tune (Experiment 1) or its title (Experiment 2), followed by a string of notes that was either an exact or an inexact reversal. The task was to judge whether the second string was correct or not by mentally reversing all its notes, thus requiring both maintenance and manipulation of the represented string. Both experiments showed considerable activation of the superior parietal lobe (intraparietal sulcus) during the reversal process. Ventrolateral and dorsolateral frontal cortices were also activated, consistent with the memory load required during the task. We also found weaker evidence for some activation of right auditory cortex in both studies, congruent with results from previous simpler music imagery tasks. We interpret these results in the context of other mental transformation tasks, such as mental rotation in the visual domain, which are known to recruit the intraparietal sulcus region, and we propose that this region subserves general computations that require transformations of a sensory input. Mental imagery tasks may thus have both task or modality-specific components as well as components that supersede any specific codes and instead represent amodal mental manipulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropsychological studies have suggested that imagery processes may be mediated by neuronal mechanisms similar to those used in perception. To test this hypothesis, and to explore the neural basis for song imagery, 12 normal subjects were scanned using the water bolus method to measure cerebral blood flow (CBF) during the performance of three tasks. In the control condition subjects saw pairs of words on each trial and judged which word was longer. In the perceptual condition subjects also viewed pairs of words, this time drawn from a familiar song; simultaneously they heard the corresponding song, and their task was to judge the change in pitch of the two cued words within the song. In the imagery condition, subjects performed precisely the same judgment as in the perceptual condition, but with no auditory input. Thus, to perform the imagery task correctly an internal auditory representation must be accessed. Paired-image subtraction of the resulting pattern of CBF, together with matched MRI for anatomical localization, revealed that both perceptual and imagery. tasks produced similar patterns of CBF changes, as compared to the control condition, in keeping with the hypothesis. More specifically, both perceiving and imagining songs are associated with bilateral neuronal activity in the secondary auditory cortices, suggesting that processes within these regions underlie the phenomenological impression of imagined sounds. Other CBF foci elicited in both tasks include areas in the left and right frontal lobes and in the left parietal lobe, as well as the supplementary motor area. This latter region implicates covert vocalization as one component of musical imagery. Direct comparison of imagery and perceptual tasks revealed CBF increases in the inferior frontal polar cortex and right thalamus. We speculate that this network of regions may be specifically associated with retrieval and/or generation of auditory information from memory.