3 resultados para F-actin crosslinker
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
As tissues and organs are formed, they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interactions contribute to egg elongation remained unclear. Recent studies using live imaging have revealed two novel processes, global tissue rotation and oscillating basal actomyosin contractions, which have provided significant insight into how the two polarized protein networks cooperate to produce an elongated egg. This review summarizes the proteins involved in Drosophila egg elongation and how this recent work has contributed to our current understanding of how egg elongation is achieved.
Resumo:
As tissues and organs are formed they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interactions contribute to egg elongation remained unclear. Recent studies using live imaging have revealed two novel processes, global tissue rotation and oscillating basal actomyosin contractions, which have provided significant insight into how the two polarized protein networks cooperate to produce an elongated egg. This review summarizes the proteins involved in Drosophila egg elongation and how this recent work has contributed to our current understanding of how egg elongation is achieved.
Resumo:
Soybean lipoxygenase-1 (SBLO-1) catalyzes the oxygenation of polyunsaturated fatty acids into conjugated diene hydroperoxides. The three dimensional structure of SBLO-1 is known, but it is not certain how substrates bind. One hypothesis involves the transient separation of helix-2 and helix-11 located on the exterior of the molecule in front of the active site iron. A second hypothesis involves a conformational change in the side chains of residues leucine 541 and threonine 259. To test these hypotheses, site directed mutagenesis was used to create a cysteine mutation on each helix, which could allow for the formation of a disulfide linkage. Disulfide formation between the two cysteines in the T259C,S545C mutant was found to be unfavorable, but later shown to be present at higher pH values using SDS-PAGE. Treatment of the T259C,S545C with the crosslinker 2,3-dibromomaleimide (DBM) resulted in a 50% reduction in catalytic activity. No loss of activity was observed when the single mutant, S545C, or the wild type was treated with DBM. Single mutants T259C and L541C both showed approximately 20% reduction in the rate after addition of DBM. Double mutants T259C,L541C and S263C,S545C showed approximately 30% reduction in the rate after addition of DBM. Single mutants T259C and L541C showed an increase in activity after incubation with NEM. Double mutants T259C,S545C and T259C,L541C showed an increase in activity after incubation with NEM. The S263C,S545C double mutant showed a slight decrease in activity in the presence of NEM. It is unclear how the NEM and DBM are interacting with the molecule, but this can easily be determined through mass spectrometry experiments.