6 resultados para Exclusion process, Multi-species, Multi-scale modelling
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
We introduce a class of distance-dependent interactions in an accelerated exclusion process inspired by the observation of transcribing RNA polymerase speeding up when “pushed” by a trailing one. On a ring, the accelerated exclusion process steady state displays a discontinuous transition, from being homogeneous (with augmented currents) to phase segregated. In the latter state, the holes appear loosely bound and move together, much like a train. Surprisingly, the current-density relation is simply J=1-ρ, signifying that the “hole train” travels with unit velocity.
Resumo:
We introduce a class of distance-dependent interactions in an accelerated exclusion process inspired by the observation of transcribing RNA polymerase speeding up when “pushed” by a trailing one. On a ring, the accelerated exclusion process steady state displays a discontinuous transition, from being homogeneous (with augmented currents) to phase segregated. In the latter state, the holes appear loosely bound and move together, much like a train. Surprisingly, the current-density relation is simply J=1-ρ, signifying that the “hole train” travels with unit velocity.
Resumo:
When particle flux is regulated by multiple factors such as particle supply and varying transport rate, it is important to identify the respective dominant regimes. We extend the well-studied totally asymmetric simple exclusion model to investigate the interplay between a controlled entrance and a local defect site. The model mimics cellular transport phenomena where there is typically a finite particle pool and nonuniform moving rates due to biochemical kinetics. Our simulations reveal regions where, despite an increasing particle supply, the current remains constant while particles redistribute in the system. Exploiting a domain wall approach with mean-field approximation, we provide a theoretical ground for our findings. The results in steady-state current and density profiles provide quantitative insights into the regulation of the transcription and translation process in bacterial protein synthesis.
Resumo:
In an accelerated exclusion process (AEP), each particle can "hop" to its adjacent site if empty as well as "kick" the frontmost particle when joining a cluster of size ℓ⩽ℓ_{max}. With various choices of the interaction range, ℓ_{max}, we find that the steady state of AEP can be found in a homogeneous phase with augmented currents (AC) or a segregated phase with holes moving at unit velocity (UV). Here we present a detailed study on the emergence of the novel phases, from two perspectives: the AEP and a mass transport process (MTP). In the latter picture, the system in the UV phase is composed of a condensate in coexistence with a fluid, while the transition from AC to UV can be regarded as condensation. Using Monte Carlo simulations, exact results for special cases, and analytic methods in a mean field approach (within the MTP), we focus on steady state currents and cluster sizes. Excellent agreement between data and theory is found, providing an insightful picture for understanding this model system.
Resumo:
Cyanobacteria are photosynthetic organisms that require the absorption of light for the completion of photosynthesis. Cyanobacteria can use a variety of wavelengths of light within thevisible light spectrum in order to harvest energy for this process. Many species of cyanobacteria have light-harvesting proteins that specialize in the absorption of a small range of wavelengths oflight along the visual light spectrum; others can undergo complementary chromatic adaptation and alter these light-harvesting proteins in order to absorb the wavelengths of light that are mostavailable in a given environment. This variation in light-harvesting phenotype across cyanobacteria leads to the utilization of environmental niches based on light wavelength availability. Furthermore, light attenuation along the water column in an aquatic system also leads to the formation of environmental niches throughout the vertical water column. In order to better understand these niches based on light wavelength availability, we studied the compositionof cyanobacterial genera at the surface and depth of Lake Chillisquaque at three time points throughout the year: September 2009, May 2010, and July 2010. We found that cyanobacterialgenera composition changes throughout the year as well as with physical location in the water column. Additionally, given the light attenuation noted throughout the Lake Chillisquaque, we are able to conclude that light is a major selective factor in the community composition of Lake Chillisquaque.
Measurement Properties of the Short Multi-Dimensional Observation Scale for Elderly Subjects (MOSES)
Resumo:
This study evaluated the five-factor measurement model of the abbreviated Multidimensional Observation Scale for Elderly Subjects (MOSES), originally proposed by Pruchno, Kleban, and Resch in 1988. Modifications of the five-factor model were examined and evaluated with regard to their practical significance. A confirmatory second-order factor analysis was performed to examine whether the correlations among the first-order factors were adequately accounted for by a global dysfunction factor. Findings indicated that the proposed measurement model was replicated adequately. Although post hoc modifications resulted in significant improvements in overall model fit, the minor parameters had only a trivial influence on the major parameters of the baseline model. Results from the second-order factor analysis showed that a global dysfunc tion factor accounted adequately for the intercorrelations among the first-order factors.