3 resultados para Equations of motion.
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
People remember moving objects as having moved farther along in their path of motion than is actually the case; this is known as representational momentum (RM). Some authors have argued that RM is an internalization of environmental properties such as physical momentum and gravity. Five experiments demonstrated that a similar memory bias could not have been learned from the environment. For right-handed Ss, objects apparently moving to the right engendered a larger memory bias in the direction of motion than did those moving to the left. This effect, clearly not derived from real-world lateral asymmetries, was relatively insensitive to changes in apparent velocity and the type of object used, and it may be confined to objects in the left half of visual space. The left–right effect may be an intrinsic property of the visual operating system, which may in turn have affected certain cultural conventions of left and right in art and other domains.
Resumo:
One observed vibration mode for Tainter gate skinplates involves the bending of the skinplate about a horizontal nodal line. This vibration mode can be approximated as a streamwise rotational vibration about the horizontal nodal line. Such a streamwise rotational vibration of a Tainter gate skinplate must push away water from the portion of the skinplate rotating into the reservoir and draw water toward the gate over that portion of the skinplate receding from the reservoir. The induced pressure is termed the push-and-draw pressure. In the present paper, this push-and-draw pressure is analyzed using the potential theory developed for dissipative wave radiation problems. In the initial analysis, the usual circular-arc skinplate is replaced by a vertical, flat, rigid weir plate so that theoretical calculations can be undertaken. The theoretical push-and-draw pressure is used in the derivation of the non-dimensional equation of motion of the flow-induced rotational vibrations. Non-dimensionalization of the equation of motion permits the identification of the dimensionless equivalent added mass and the wave radiation damping coefficients. Free vibration tests of a vertical, flat, rigid weir plate model, both in air and in water, were performed to measure the equivalent added mass and the wave radiation damping coefficients. Experimental results compared favorably with the theoretical predictions, thus validating the theoretical analysis of the equivalent added mass and wave radiation damping coefficients as a prediction tool for flow-induced vibrations. Subsequently, the equation of motion of an inclined circular-arc skinplate was developed by incorporating a pressure correction coefficient, which permits empirical adaptation of the results from the hydrodynamic pressure analysis of the vertical, flat, rigid weir plate. Results from in-water free vibration tests on a 1/31-scale skinplate model of the Folsom Dam Tainter gate are used to demonstrate the utility of the equivalent added mass coefficient.
Resumo:
Statically balanced compliant mechanisms require no holding force throughout their range of motion while maintaining the advantages of compliant mechanisms. In this paper, a postbuckled fixed-guided beam is proposed to provide the negative stiffness to balance the positive stiffness of a compliant mechanism. To that end, a curve decomposition modeling method is presented to simplify the large deflection analysis. The modeling method facilitates parametric design insight and elucidates key points on the force-deflection curve. Experimental results validate the analysis. Furthermore, static balancing with fixed-guided beams is demonstrated for a rectilinear proof-of-concept prototype.