2 resultados para Environment with multiple obstacles

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent increase in the amount of nanoparticles incorporated into commercial products is accompanied by a rising concern of the fate of these nanoparticles. Once released into the environment, it is inevitable that the nanoparticles will come into contact with the soil, introducing them to various routes of environmental contamination. One route that was explored in this research was the interaction between nanoparticles and clay minerals. In order to better define the interactions between clay minerals and positively charged nanoparticles, in situ atomic force microscopy (AFM) was utilized. In situ AFM experiments allowed interactions between clay minerals and positively charged nanoparticles to be observed in real time. The preliminary results demonstrated that in situ AFM was a reliable technique for studying the interactions between clay minerals and positively charged nanoparticles and showed that the nanoparticles affected the swelling (height) of the clay quasi-crystals upon exposure. The preliminary AFM data were complemented by batch study experiments which measured the absorbance of the nanoparticle filtrate after introduction to clay minerals in an effort to better determine the mobility of the positively charged nanoparticles in an environment with significant clay contribution. The results of the batch study indicated that the interactions between clay minerals and positively charged nanoparticles were size dependent and that the interactions of the different size nanoparticles with the clay may be occurring to different degrees. The degree to which the different size nanoparticles were interacting with the clay was further probed using FTIR (Fourier transform infrared) spectroscopy experiments. The results of these experiments showed that interactions between clay minerals and positively charged nanoparticles were size dependent as indicated by a change in the FTIR spectra of the nanoparticles upon introduction to clay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preliminary detrital zircon age distributions from Mazatzal crustal province quartzite and schist exposed in the Manzano Mountains and Pedernal Hills of central New Mexico are consistent with a mixture of detritus from Mazatzal age (ca. 1650 Ma), Yavapai age (ca. 1720 Ma.), and older sources. A quartzite sample from the Blue Springs Formation in the Manzano Mountains yielding 67 concordant grain analyses shows two dominant age peaks of 1737 Ma and 1791 Ma with a minimum peak age of 1652 Ma. Quartzite and micaceous quartzite samples from near Pedernal Peak give unimodal peak ages of ca. 1695 Ma and 1738 Ma with minimum detrital zircon ages of ca. 1625 Ma and 1680 Ma, respectively. A schist sample from the southern exposures of the Pedernal Hills area gives a unimodal peak age of 1680 Ma with a minimum age of ca. 1635 Ma. Minor amounts of older detritus (>1800 Ma) possibly reflect Trans-Hudson, Wyoming, Mojave Province, and older Archean sources and aid in locating potential source terrains for these detrital zircon. The Blue Springs Formation metarhyolite from near the top of the Proterozoic section in the Manzano Mountains yields 71 concordant grains that show a preliminary U-Pb zircon crystallization age of 1621 ¿ 5 Ma, which provides a minimum age constraint for deposition in the Manzano Mountains. Normalized probability plots from this study are similar to previously reported age distributions in the Burro and San Andres Mountains in southern New Mexico and suggest that Yavapai Province age detritus was deposited and intermingled with Mazatzal Province age detritus across much of the Mazatzal crustal province in New Mexico. This data shows that the tectonic evolution of southwestern Laurentia is associated with multiple orogenic events. Regional metamorphism and deformation in the area must postdate the Mazatzal Orogeny and ca. 1610 Ma ¿ 1620 Ma rhyolite crystallization and is attributed to the Mesoproterozoic ca. 1400 ¿ 1480 Ma Picuris Orogeny.