6 resultados para Engineering, Environmental

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Treatment plants that operate either thermophilic or mesophilic anaerobic digesters with centrifugal dewatering processes have consistently observed densities of fecal coliform and Escherichia coli, both indicator bacteria, that decrease during digestion but then increase after dewatering and storage. The increases have been characterized as two separate phenomena to explain this observation: 1) “Sudden Increase,” or SI, which is defined as the increase that occurs immediately after dewatering and 2) “regrowth,” which is defined as an increase during storage of cake samples over a period of hours or days. The SI observation appears to be more prevalent with biosolids that are generated with thermophilic processes and dewatered by centrifugation. Both thermophilic and mesophilic digesters with centrifuge dewatering processes have observed the regrowth phenomena. This research hypothesizes that the SI phenomenon is due to the presence of viable nonculturable (VNC) bacteria that are reactivated during dewatering. In other words, the bacteria were always present but were not enumerated by standard culturing methods (SCM). Analysis of the E. coli density in thermally treated solids by SCMs and quantitative real-time polymerase chain reaction (qPCR) indicated that E. coli densities are often underestimated by SCM. When analyzed with qPCR, the E. coli density after digestion can be 4-5 orders of magnitude greater than the non-detect levels identified by SCMs, which supports the non-culturable hypothesis. The VNC state describes a condition where bacteria are alive but unable to sustain the metabolic process needed for cellular division. Supplements added to culturing media were investigated to determine if the resuscitation of VNC bacteria could be enhanced. The autoinducer molecules Nhexanoyl- L-Homoserine lactone (C6-HSL), 3-oxo-N-octanoyl-L-Homoserine lactone (3-oxo- C8-HSL), and norepinephrine were unable to induce the resuscitation of VNC E. coli. Additional sampling was performed to determine if autoinducer molecules, peroxides, or other as of yet unknown inhibitory agents and toxins could be removed from biosolids during SCM. Culture media supplemented with the peroxide degrading compounds catalase, α-ketoglutaric acid, and sodium pyruvate was unable to resuscitate non-culturable E. coli. The additions of bentonite and exponential growth phase E. coli cell-free supernatant to culturing media were also unable to increase the culturability of E. coli. To remove inhibitory agents and toxins, a cell washing technique was employed prior to performing SCM; however, this cell washing technique may have increased cellular stresses that inhibited resuscitation since cell densities decreased. A novel laboratory-scale dewatering process was also investigated to determine if the SI and regrowth phenomena observed in full-scale centrifugal dewatering could be mimicked in the laboratory using a lab shearing device. Fecal coliform and E. coli densities in laboratory prepared cake samples were observed to be an order of magnitude higher than full-scale dewatered cakes. Additionally, the laboratory-scale dewatering process was able to resuscitate fecal coliforms and E. coli in stored sludge such that the density increased by 4-5 orders of magnitude from nondetect values. Lastly, the addition of aluminum sulfate during centrifuge dewatering at a full-scale utility produced an increased regrowth of fecal coliforms and E. coli that was sustained for 5 days.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Jing Ltd. miniature combustion aerosol standard (Mini-CAST) soot generator is a portable, commercially available burner that is widely used for laboratory measurements of soot processes. While many studies have used the Mini-CAST to generate soot with known size, concentration, and organic carbon fraction under a single or few conditions, there has been no systematic study of the burner operation over a wide range of operating conditions. Here, we present a comprehensive characterization of the microphysical, chemical, morphological, and hygroscopic properties of Mini-CAST soot over the full range of oxidation air and mixing N-2 flow rates. Very fuel-rich and fuel-lean flame conditions are found to produce organic-dominated soot with mode diameters of 10-60nm, and the highest particle number concentrations are produced under fuel-rich conditions. The lowest organic fraction and largest diameter soot (70-130nm) occur under slightly fuel-lean conditions. Moving from fuel-rich to fuel-lean conditions also increases the O:C ratio of the soot coatings from similar to 0.05 to similar to 0.25, which causes a small fraction of the particles to act as cloud condensation nuclei near the Kelvin limit (kappa similar to 0-10(-3)). Comparison of these property ranges to those reported in the literature for aircraft and diesel engine soots indicates that the Mini-CAST soot is similar to real-world primary soot particles, which lends itself to a variety of process-based soot studies. The trends in soot properties uncovered here will guide selection of burner operating conditions to achieve optimum soot properties that are most relevant to such studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Land surface temperature (LST) plays a key role in governing the land surface energy budget, and measurements or estimates of LST are an integral part of many land surface models and methods to estimate land surface sensible heat (H) and latent heat fluxes. In particular, the LST anchors the potential temperature profile in Monin-Obukhov similarity theory, from which H can be derived. Brutsaert has made important contributions to our understanding the nature of surface temperature measurements as well as the practical but theoretically sound use of LST in this framework. His work has coincided with the wide-spread availability of remotely sensed LST measurements. Use of remotely sensed LST estimates inevitably involves complicating factors, such as: varying spatial and temporal scales in measurements, theory, and models; spatial variability of LST and H; the relationship between measurements of LST and the temperature felt by the atmosphere; and the need to correct satellite-based radiometric LST measurements for the radiative effects of the atmosphere. This paper reviews the progress made in research in these areas by tracing and commenting on Brutsaert's contributions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of human-structure interaction on the dynamic performance of occupied structures have long been observed. The inclusion of the effects of human-structure interaction is important to ensure that the dynamic response of a structure is not overestimated. Previous observations, both in service and in the laboratory, have yielded results indicating that the effects are dependent on the natural frequency of the structure, the posture of the occupants, and the mass ratio of the occupants to the structure. These results are noteworthy, but are limited in their application,because the data are sparse and are only pertinent to a specific set of characteristics identified in a given study. To examine these characteristics simultaneously and consistently, an experimental test structure was designed with variable properties to replicate a variety of configurations within a controlled setting focusing on the effects of passive occupants. Experimental modal analysis techniques were employed to both the empty and occupied conditions of the structure and the dynamic properties associated with each condition were compared. Results similar to previous investigations were observed, including both an increase and a decrease in natural frequency of the occupied structure with respect to the empty structure, as well as the identification of a second mode of vibration. The damping of the combined system was higher for all configurations. Overall, this study provides a broad data set representing a wide array of configurations. The experimental results of this study were used to assess current recommendations for the dynamic properties of a crowd to analytically predict the effects of human-structure interaction. The experimental results were used to select a set of properties for passive, standing occupants and develop a new model that can more accurately represent the behavior of the human-structure system as experimentally measured in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modifications and upgrades to the hydraulic flume facility in the Environmental Fluid Mechanics and Hydraulics Laboratory (EFM&H) at Bucknell University are described. These changes enable small-scale testing of model marine hydrokinetic(MHK) devices. The design of the experimental platform provides a controlled environment for testing of model MHK devices to determine their effect on localsubstrate. Specifically, the effects being studied are scour and erosion around a cylindrical support structure and deposition of sediment downstream from the device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric aerosols affect both global and regional climate by altering the radiative balance of the atmosphere and acting as cloud condensation nuclei. Despite an increased focus on the research of atmospheric aerosols due to concerns about global climate change, current methods to observe the morphology of aerosols and to measure their hygroscopic properties are limited in various ways by experimental procedure. The primary objectives of this thesis were to use atomic force microscopy to determine the morphology of atmospherically relevant aerosols and to investigate theutility of environmental atomic force microscopy for imaging aerosols as they respond to changes in relative humidity. Traditional aerosol generation and collection techniques were used in conjunction with atomic force microscopy to image commonorganic and inorganic aerosols. In addition, environmental AFM was used to image aerosols at a variety of relative humidity values. The results of this research demonstrated the utility of atomic force microscopy for measuring the morphology of aerosols. In addition, the utility of environmental AFM for measuring the hygroscopic properties of aerosols was demonstrated. Further research in this area will lead to an increased understanding of the role oforganic and inorganic aerosols in the atmosphere, allowing for the effects of anthropogenic aerosol emissions to be quantified and for more accurate climate models to be developed.