5 resultados para Engineered Barriers
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
We present theory and experiments on the dynamics of reaction fronts in two-dimensional, vortex-dominated flows, for both time-independent and periodically driven cases. We find that the front propagation process is controlled by one-sided barriers that are either fixed in the laboratory frame (time-independent flows) or oscillate periodically (periodically driven flows). We call these barriers burning invariant manifolds (BIMs), since their role in front propagation is analogous to that of invariant manifolds in the transport and mixing of passive impurities under advection. Theoretically, the BIMs emerge from a dynamical systems approach when the advection-reaction-diffusion dynamics is recast as an ODE for front element dynamics. Experimentally, we measure the location of BIMs for several laboratory flows and confirm their role as barriers to front propagation.
Resumo:
Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane. The results indicate that, despite the theoretical inconsistency between the counter-diffusion assumption and the salt-diffusion conditions of the experiments, the predictive ability of solute transport theory based on the assumption of counter diffusion is not significantly different from that based on the assumption of salt diffusion, provided that the input parameters used in each theory are derived under the same assumption inherent in the theory. Nonetheless, salt-diffusion theory is fundamentally correct and, therefore, is more appropriate for problems involving salt diffusion in clay membranes. Finally, the fact that solute diffusion cannot occur in an ideal or perfect membrane is not explicitly captured in any of the theoretical expressions for total solute flux in clay membranes, but rather is generally accounted for via inclusion of an effective porosity, n(e), or a restrictive tortuosity factor, tau(r), in the formulation of Fick's first law for diffusion. Both n(e) and tau(r) have been correlated as a linear function of membrane efficiency. This linear correlation is supported theoretically by pore-scale modeling of solid-liquid interactions, but experimental support is limited. Additional data are needed to bolster the validity of the linear correlation for clay membranes. Copyright 2012 Elsevier B.V. All rights reserved.
Resumo:
We present experiments on reactive front propagation in a two-dimensional (2D) vortex chain flow (both time-independent and time-periodic) and a 2D spatially disordered (time-independent) vortex-dominated flow. The flows are generated using magnetohydrodynamic forcing techniques, and the fronts are produced using the excitable, ferroin-catalyzed Belousov-Zhabotinsky chemical reaction. In both of these flows, front propagation is dominated by the presence of burning invariant manifolds (BIMs) that act as barriers, similar to invariant manifolds that dominate the transport of passive impurities. Convergence of the fronts onto these BIMs is shown experimentally for all of the flows studied. The BIMs are also shown to collapse onto the invariant manifolds for passive transport in the limit of large flow velocities. For the disordered flow, the measured BIMs are compared to those predicted using a measured velocity field and a three-dimensional set of ordinary differential equations that describe the dynamics of front propagation in advection-reaction-diffusion systems.
Resumo:
Outside of relatively limited crash testing with large trucks, very little is known regarding the performance of traffic barriers subjected to real-world large truck impacts. The purpose of this study was to investigate real-world large truck impacts into traffic barriers to determine barrier crash involvement rates, the impact performance of barriers not specifically designed to redirect large trucks, and the real-world performance of large-truck-specific barriers. Data sources included the Fatality Analysis Reporting System (2000-2009), the General Estimates System (2000-2009) and 155 in-depth large truck-to-barrier crashes from the Large Truck Crash Causation Study. Large truck impacts with a longitudinal barrier were found to comprise 3 percent of all police-reported longitudinal barrier impacts and roughly the same proportion of barrier fatalities. Based on a logistic regression model predicting barrier penetration, large truck barrier penetration risk was found to increase by a factor of 6 for impacts with barriers designed primarily for passenger vehicles. Although large-truck-specific barriers were found to perform better than non-heavy vehicle specific barriers, the penetration rate of these barriers were found to be 17 percent. This penetration rate is especially a concern because the higher test level barriers are designed to protect other road users, not the occupants of the large truck. Surprisingly, barriers not specifically designed for large truck impacts were found to prevent large truck penetration approximately half of the time. This suggests that adding costlier higher test level barriers may not always be warranted, especially on roadways with lower truck volumes.
Resumo:
Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane. The results indicate that, despite the theoretical inconsistency between the counter-diffusion assumption and the salt-diffusion conditions of the experiments, the predictive ability of solute transport theory based on the assumption of counter diffusion is not significantly different from that based on the assumption of salt diffusion, provided that the input parameters used in each theory are derived under the same assumption inherent in the theory. Nonetheless, salt-diffusion theory is fundamentally correct and, therefore, is more appropriate for problems involving salt diffusion in clay membranes. Finally, the fact that solute diffusion cannot occur in an ideal or perfect membrane is not explicitly captured in any of the theoretical expressions for total solute flux in clay membranes, but rather is generally accounted for via inclusion of an effective porosity, ne, or a restrictive tortuosity factor, tr, in the formulation of Fick's first law for diffusion. Both ne and tr have been correlated as a linear function of membrane efficiency. This linear correlation is supported theoretically by pore-scale modeling of solid-liquid interactions, but experimental support is limited. Additional data are needed to bolster the validity of the linear correlation for clay membranes.