3 resultados para Electrophoresis, Gel, Pulsed-Field

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work described herein is aimed at understanding primary and secondary aggregation of bile salt micelles and how micelles can perform chiral recognition of binapthyl analytes. Previous work with cholate and deoxycholate using micellar electrokinetic chromatography (MEKC) and nuclear magnetic resonance (NMR) has provided insightinto cholate and deoxycholate micelle formation, especially with respect to the critical micelle concentration (CMC). Chiral separations of the model analyte, 1,1â??-binaphthyl-2,2â??-diyl hydrogen phosphate (BNDHP), via cholate (C) and deoxycholate (DC) mediated MEKC separataions previously have shown the DC CMC to be 7-10 mM andthe cholate CMC at 14 mM at ph 12. A second model analyte,1,1â??-binaphthol (BN), was also previously investigated to probe micellar structure, but the MEKC data for this analyte implied a higher CMC, which may be interpreted as secondary aggregation. Thiswork extends the investigation of bile salts to include pulsed field gradient spin echo (PFGSE) NMR experiments being used to gain information about the size and degree of polydispersity of cholate and deoxycholate micelles. Concentrations of cholate below 10mM show a large variation in effective radius likely due to the existence of transient preliminary aggregates. The onset of the primary micelle shows a dramatic increase in effective radius of the micelle in cholate and deoxycholate. In the region of expectedsecondary aggregation a gradual increase of effective radius was observed with cholate; deoxycholate showed a persistent aggregate size in the secondary micelle region that is modulated by the presence of an analyte molecule. Effective radii of cholate anddeoxycholate (individually) were compared with and without R- and S-BNDHP in order to observe the effective radius difference of micelles with and without analyte present. The presence of S-BNDHP consistently resulted in a larger effective aggregate radius incholate and deoxycholate, confirming previous data of the S-BNDHP interacting more with the micelle than R-BNDHP. In total, various NMR techniques, like diffusion NMR can be used to gain a greater understanding of the bile salt micellization process and chiral resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel microfluidic method is proposed for studying diffusion of small molecules in a hydrogel. Microfluidic devices were prepared with semi-permeable microchannels defined by crosslinked poly(ethylene glycol) (PEG). Uptake of dye molecules from aqueous solutions flowing through the microchannels was observedoptically and diffusion of the dye into the hydrogel was quantified. To complement the diffusion measurements from the microfluidic studies, nuclear magnetic resonance(NMR) characterization of the diffusion of dye in the PEG hydrogels was performed. The diffusion of small molecules in a hydrogel is relevant to applications such asdrug delivery and modeling transport for tissue-engineering applications. The diffusion of small molecules in a hydrogel is dependent on the extent of crosslinking within the gel, gel structure, and interactions between the diffusive species and the hydrogel network. These effects were studied in a model environment (semi-infinite slab) at the hydrogelfluid boundary in a microfluidic device. The microfluidic devices containing PEG microchannels were fabricated using photolithography. The unsteady diffusion of small molecules (dyes) within the microfluidic device was monitored and recorded using a digital microscope. The information was analyzed with techniques drawn from digital microscopy and image analysis to obtain concentration profiles with time. Using a diffusion model to fit this concentration vs. position data, a diffusion coefficient was obtained. This diffusion coefficient was compared to those from complementary NMR analysis. A pulsed field gradient (PFG) method was used to investigate and quantify small molecule diffusion in gradient (PFG) method was used to investigate and quantify small molecule diffusion in hydrogels. There is good agreement between the diffusion coefficients obtained from the microfluidic methods and those found from the NMR studies. The microfluidic approachused in this research enables the study of diffusion at length scales that approach those of vasculature, facilitating models for studying drug elution from hydrogels in blood-contacting applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Creatinine levels in blood serum are typically used to assess renal function. Clinical determination of creatinine is often based on the Jaffe reaction, in which creatinine in the serum reacts with sodium picrate, resulting in a spectrophotometrically quantifiable product. Previous work from our lab has introduced an electrophoretically mediated initiation of this reaction, in which nanoliter plugs of individual reagent solutions can be added to the capillary and then mixed and reacted. Following electrophoretic separation of the product from excess reactant(s), the product can be directly determined on column. This work aims to gain a detailed understanding of the in-capillary reagent mixing dynamics, in-line reaction yield, and product degradation during electrophoresis, with an overall goal of improving assay sensitivity. One set of experiments focuses on maximizing product formation through manipulation of various conditions such as pH, voltage applied, and timing of the applied voltage, in addition to manipulations in the identity, concentration, and pH of the background electrolyte. Through this work, it was determined that dramatic changes in local voltage fields within the various reagent zones lead to ineffective reagent overlapping. Use of the software simulation program Simul 5 enabled visualization of the reaction dynamics within the capillary, specifically the wide variance between the electric field intensities within the creatinine and picrate zones. Because of this simulation work, the experimental method was modified to increase the ionic strength of the creatinine reagent zone to lower the local voltage field, thus producing more predictable and effective overlap conditions for the reagents and allowing the formation of more Jaffe product. As second set of experiments focuses on controlling the post-reaction product degradation. In that vein, we have systematically explored the importance of the identity, concentration, and pH of the background electrolyte on the post-reaction degradation rate of the product. Although prior work with borate background electrolytes indicated that product degradation was probably a function of the ionic strength of the background electrolyte, this work with a glycine background electrolyte demonstrates that degradation is in fact not a function of ionic strength of the background electrolyte. As the concentration and pH of the glycine background increased, the rate of degradation of product did not change dramatically, whereas in borate-buffered systems, the rate of Jaffe product degradation increased linearly with background electrolyte concentration above 100.0 mM borate. Similarly, increasing pH of the glycine background electrolyte did not result in a corresponding increase in product degradation, as it had with the borate background electrolyte. Other general trends that were observed include: increasing background electrolyte concentration increases peak efficiency and higher pH favors product formation; thus, it appears that use of a background electrolyte other than borate, such as glycine, the rate of degradation of the Jaffe product can be slowed, increasing the sensitivity of this in-line assay.