3 resultados para Eighth grade (Education)
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Using path analysis, the present investigation was done to clarify possible causal linkages among general scholastic aptitude, academic achievement in mathematics, self-concept of ability, and performance on a mathematics examination. Subjects were 122 eighth-grade students who completed a mathematics examination as well as a measure of self-concept of ability. Aptitude and achievement measures were obtained from school records. Analysis showed sex differences in prediction of performance on the mathematics examination. For boys, this performance could be predicted from scholastic aptitude and previous achievement in mathematics. For girls, performance only could be predicted from previous achievement in mathematics. These results indicate that the direction, strength, and magnitude of relations among these variables differed for boys and girls, while mean levels of performance did not.
Resumo:
The purpose of the present study is to investigate how teachers feel about their abilities to educate students with special needs, how their degree of teacher self-efficacy compares to intended courses of action, if teachers develop learned helplessness over time, if there is a relationship between low teacher efficacy and high learned helplessness, and if teacher self-efficacy and learned helplessness differ by gender, educational level, years of teaching experiences, and grade level taught.
Resumo:
Engineering students continue to develop and show misconceptions due to prior knowledge and experiences (Miller, Streveler, Olds, Chi, Nelson, & Geist, 2007). Misconceptions have been documented in students’ understanding of heat transfer(Krause, Decker, Niska, Alford, & Griffin, 2003) by concept inventories (e.g., Jacobi,Martin, Mitchell, & Newell, 2003; Nottis, Prince, Vigeant, Nelson, & Hartsock, 2009). Students’ conceptual understanding has also been shown to vary by grade point average (Nottis et al., 2009). Inquiry-based activities (Nottis, Prince, & Vigeant, 2010) haveshown some success over traditional instructional methods (Tasoglu & Bakac, 2010) in altering misconceptions. The purpose of the current study was to determine whether undergraduate engineering students’ understanding of heat transfer concepts significantly changed after instruction with eight inquiry-based activities (Prince & Felder, 2007) supplementing instruction and whether students’ self reported GPA and prior knowledge, as measured by completion of specific engineering courses, affected these changes. The Heat and Energy Concept Inventory (Prince, Vigeant, & Nottis, 2010) was used to assess conceptual understanding. It was found that conceptual understanding significantly increased from pre- to post-test. It was also found that GPA had an effect on conceptual understanding of heat transfer; significant differences were found in post-test scores onthe concept inventory between GPA groups. However, there were mixed results when courses previously taken were analyzed. Future research should strive to analyze how prior knowledge effects conceptual understanding and aim to reduce the limitations of the current study such as, sampling method and methods of measuring GPA and priorknowledge.