3 resultados para Effective mass (Physics)
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Doubly charged ion mass spectra of alkyl-substituted furans and pyrroles were obtained using a double-focusing magnetic mass spectrometer operated at 3.2 kV accelerating voltage. Molecular ions were the dominant species found in doubly charged spectra of lower molecular weight heterocydic compounds, whereas the spectra of the higher weight homologues were typified by abundant fragment ions from extensive decomposition. Measured doubly charged ionization and appearance energies ranged from 22.8 to 47.9 eV. Ionization energies were correlated with values calculated using self-consistent field–molecular orbital techniques. A multichannel diabatic curve-crossing model was developed to investigate the fundamental organic ion reactions responsible for development of doubly charged ion mass spectra. Probabilities for Landau–Zener type transitions between reactant and product curves were determined and used in the collision model to predict charge-transfer cross-sections, which compared favorably with experimental cross-sections obtained using time-of-flight techniques.
Resumo:
In an accelerated exclusion process (AEP), each particle can "hop" to its adjacent site if empty as well as "kick" the frontmost particle when joining a cluster of size ℓ⩽ℓ_{max}. With various choices of the interaction range, ℓ_{max}, we find that the steady state of AEP can be found in a homogeneous phase with augmented currents (AC) or a segregated phase with holes moving at unit velocity (UV). Here we present a detailed study on the emergence of the novel phases, from two perspectives: the AEP and a mass transport process (MTP). In the latter picture, the system in the UV phase is composed of a condensate in coexistence with a fluid, while the transition from AC to UV can be regarded as condensation. Using Monte Carlo simulations, exact results for special cases, and analytic methods in a mean field approach (within the MTP), we focus on steady state currents and cluster sizes. Excellent agreement between data and theory is found, providing an insightful picture for understanding this model system.
Resumo:
Collision-induced dissociation (CID) of peptides using tandem mass spectrometry (MS) has been used to determine the identity of peptides and other large biological molecules. Mass spectrometry (MS) is a useful tool for determining the identity of molecules based on their interaction with electromagnetic fields. If coupled with another method like infrared (IR) vibrational spectroscopy, MS can provide structural information, but in its own right, MS can only provide the mass-to-charge (m/z) ratio of the fragments produced, which may not be enough information to determine the mechanism of the collision-induced dissociation (CID) of the molecule. In this case, theoretical calculations provide a useful companion for MS data and yield clues about the energetics of the dissociation. In this study, negative ion electrospray tandem MS was used to study the CID of the deprotonated dipeptide glycine-serine (Gly-Ser). Though negative ion MS is not as popular a choice as positive ion MS, studies by Bowie et al. show that it yields unique clues about molecular structure which complement positive ion spectroscopy, such as characteristic fragmentations like the loss of formaldehyde from the serine residue.2 The increase in the collision energy in the mass spectrometer alters the flexibility of the dipeptide backbone, enabling isomerizations (reactions not resulting in a fragment loss) and dissociations to take place. The mechanism of the CID of Gly-Ser was studied using two computational methods, B3LYP/6-311+G* and M06-2X/6-311++G**. The main pathway for molecular dissociation was analyzed in 5 conformers in an attempt to verify the initial mechanism proposed by Dr. James Swan after examination of the MS data. The results suggest that the loss of formaldehyde from serine, which Bowie et al. indicates is a characteristic of the presence of serine in a protein residue, is an endothermic reaction that is made possible by the conversion of the translational energy of the ion into internal energy as the ion collides with the inert collision gas. It has also been determined that the M06-2X functional¿s improved description of medium and long-range correlation makes it more effective than the B3LYP functional at finding elusive transition states. M06-2X also more accurately predicts the energy of those transition states than does B3LYP. A second CID mechanism, which passes through intermediates with the same m/z ratio as the main pathway for molecular dissociation, but different structures, including a diketopiperazine intermediate, was also studied. This pathway for molecular dissociation was analyzed with 3 conformers and the M06-2X functional, due to its previously determined effectiveness. The results suggest that the latter pathway, which meets the same intermediate masses as the first mechanism, is lower in overall energy and therefore a more likely pathway of dissociation than the first mechanism.