3 resultados para ENERGY-LOSS-SPECTROSCOPY

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

90.00% 90.00%

Publicador:

Resumo:

na provide students with motivation for the study of quantum mechanics. That microscopic matter exists in quantized states can be demonstrated with modem versions of historic experiments: atomic line spectra (I), resonance potentials, and blackbody radiation. The resonance potentials of mercury were discovered by Franck and Hertz in 1914 (2). Their experiment consisted of bombarding atoms by electrons, and detecting the kinetic energy loss of the scattered electrons (3). Prior to the Franck-Hertz experiment, spectroscopic work bv Balmer and Rvdbere revealed that atoms emitted radiatibn at discrete ekergiis. The Franck-Hertz experiment showed directly that auantized enerm levels in an atom are real, not jist optiEal artifacts. atom can be raised to excited states by inelastic collisions with electrons as well as lowered from excited states by emission of photons. The classic Franck-Hertz experiment is carried out with mercury (4-7). Here we present an experiment for the study of resonance potentials using neon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solar energy is the most abundant persistent energy resource. It is also an intermittent one available for only a fraction of each day while the demand for electric power never ceases. To produce a significant amount of power at the utility scale, electricity generated from solar energy must be dispatchable and able to be supplied in response to variations in demand. This requires energy storage that serves to decouple the intermittent solar resource from the load and enables around-the-clock power production from solar energy. Practically, solar energy storage technologies must be efficient as any energy loss results in an increase in the amount of required collection hardware, the largest cost in a solar electric power system. Storing solar energy as heat has been shown to be an efficient, scalable, and relatively low-cost approach to providing dispatchable solar electricity. Concentrating solar power systems that include thermal energy storage (TES) use mirrors to focus sunlight onto a heat exchanger where it is converted to thermal energy that is carried away by a heat transfer fluid and used to drive a conventional thermal power cycle (e.g., steam power plant), or stored for later use. Several approaches to TES have been developed and can generally be categorized as either thermophysical (wherein energy is stored in a hot fluid or solid medium or by causing a phase change that can later be reversed to release heat) or thermochemical (in which energy is stored in chemical bonds requiring two or more reversible chemical reactions).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ASTM A529 carbon¿manganese steel angle specimens were joined by flash butt welding and the effects of varying process parameter settings on the resulting welds were investigated. The weld metal and heat affected zones were examined and tested using tensile testing, ultrasonic scanning, Rockwell hardness testing, optical microscopy, and scanning electron microscopy with energy dispersive spectroscopy in order to quantify the effect of process variables on weld quality. Statistical analysis of experimental tensile and ultrasonic scanning data highlighted the sensitivity of weld strength and the presence of weld zone inclusions and interfacial defects to the process factors of upset current, flashing time duration, and upset dimension. Subsequent microstructural analysis revealed various phases within the weld and heat affected zone, including acicular ferrite, Widmanstätten or side-plate ferrite, and grain boundary ferrite. Inspection of the fracture surfaces of multiple tensile specimens, with scanning electron microscopy, displayed evidence of brittle cleavage fracture within the weld zone for certain factor combinations. Test results also indicated that hardness was increased in the weld zone for all specimens, which can be attributed to the extensive deformation of the upset operation. The significance of weld process factor levels on microstructure, fracture characteristics, and weld zone strength was analyzed. The relationships between significant flash welding process variables and weld quality metrics as applied to ASTM A529-Grade 50 steel angle were formalized in empirical process models.