2 resultados para EMISSION-SPECTRA

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Towards the goal of investigating the possible Twisted Intramolecular Charge Transfer (TICT) state mechanism of fluorescence emission, two aromatic dicyanovinyl compounds, 2-(naphthalene-2-ylmethylene) malononitrile (DCN) and a rigidified analogue, 3,4-dihydrophenanthren-1(2H)-ylidene)malononitrile (RDCN) were synthesized and their absorption and steady-state fluorescence emission spectra characterized. The spectral characterization was divided into two studies: first, DCN and RDCN were characterized in liquid solvents of increasing polarity; second, DCN and RDCN were characterized in viscous solvents and rigid glass media. The absorption spectra for both DCN and RDCN in all solvents demonstrated little to no solvatochromism. Emission results for DCN and RDCN in liquid solvents of increasing polarity showed DCN possessing strong solvatochromism while RDCN showed much less solvatochromism. Using the Lippert-Mataga equation, the difference between the ground and excited state dipole moment for DCN was estimated to be 8.4 + 0.4 Debye and between ~3.0 to 5.0 Debye for RDCN. Quantum yield measurements for DCN and RDCN in hexane, diethyl ether and acetonitrile were less than 0.01 and independent of polarity for both both solvents, with DCN generally possessing a quantum yield 3-4 times greater than RDCN. Experiments in glass media for DCN and RDCN showed a lessening of their solvatochromic character in both polar and non-polar glasses. These data provide strong evidence for a link between molecular flexibility and solvatochromism. However, while these data are consistent with a TICT state hypothesis for the emission mechanism, an alternative mechanism proposed by Maroncelli et al.10 involving rotation about the dicyanovinyl double bond in the excited state remains a possibility as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solvatochromism and thermochromism describe how a solvent or environment affects the photophysical behavior of a photoluminescent solute. The most common use of solvatochromism is as a probe in which the polarity of a solvent in which a solvatochromic solute is dissolved can be spectroscopically measured. Solvatochromic and thermochromic studies of tryptanthrin in several different solvents are reported. Absorption and corrected emission spectra for tryptanthrin at ~10-6 M concentrations are reported in four aprotic and nine alcoholic solvents. The absorption spectra are relatively unaffected by changes in solvent polarity and by differences in the hydrogen bonding ability of the alcoholic solvents. The emission spectra are much more affected by changes in solvent polarity and hydrogen bonding ability. In aprotic solvents, emission energy decreases and emission intensity increases with increasing solvent polarity. In the alcoholic solvents, emission energy also decreases with increasing solvent polarity. However, emission intensity for the alcoholic solvents varies significantly from the aprotic solvents over similar polarity ranges. This suggests that in the alcoholic solvents, hydrogen bonding ability correlates better than polarity to emission energy and intensity trends. The absorption and emission data in the aprotic solvents were also used to estimate the ground and emitting excited state dipole moments for tryptanthrin. The value obtained for the ground state dipole moment (2.37 D) agrees with theoretical results (2.06 D) and a previously reported experimental value (2.0 D). Attempts to explain previously reported results and conclusions with respect to the solvatochromic behavior of the aromatic carbonyls fluorenone and benzo(b)fluorenone were explored in an attempt to understand the solvatochromic response of tryptanthrin. Such attempts include models dependent on non-radiative decay pathways like intersystem crossing, internal conversion, and hydrogen bonding interactions.