4 resultados para ELONGATION
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
As tissues and organs are formed, they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interactions contribute to egg elongation remained unclear. Recent studies using live imaging have revealed two novel processes, global tissue rotation and oscillating basal actomyosin contractions, which have provided significant insight into how the two polarized protein networks cooperate to produce an elongated egg. This review summarizes the proteins involved in Drosophila egg elongation and how this recent work has contributed to our current understanding of how egg elongation is achieved.
Resumo:
As tissues and organs are formed they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interactions contribute to egg elongation remained unclear. Recent studies using live imaging have revealed two novel processes, global tissue rotation and oscillating basal actomyosin contractions, which have provided significant insight into how the two polarized protein networks cooperate to produce an elongated egg. This review summarizes the proteins involved in Drosophila egg elongation and how this recent work has contributed to our current understanding of how egg elongation is achieved.
Polymerization of Styrene and Cyclization to Macrocyclic Polystyrene in a One-Pot, Two-Step Sequence
Resumo:
Dibrominated polystyrene (BrPStBr) was produced by atom transfer radical polymerization (ATRP) at 80 degrees C, using the bifunctional initiator benzal bromide to afford the telechelic precursor. The ATRP reaction was stopped around 40% monomer conversion and directly converted into an radical trap-assisted atom transfer radical coupling (RTA-ATRC) reaction by lowering the temperature to 50 degrees C, and adding the radical trap 2-methyl-2-nitrosopropane (MNP) along with additional catalyst, reducing agent, and ligand to match ATRC-type reaction conditions. In an attempt to induce intramolecular coupling, rather than solely intermolecular coupling and elongation, the total reaction volume was increased by the addition of varying amounts of THF. Cyclization, along with intermolecular coupling and elongation, occurred in all cases, with the extent of ring closure a function of the total reaction volume. The cyclic portion of the coupled product was found to have a (G) value around 0.8 by GPC analysis, consistent with the reduction in hydrodynamic volume of a cyclic polymer compared to its linear analog. Analysis of the sequence by H-1 NMR confirmed that propagation was suppressed nearly completely during the RTA-ATRC phase, with percent monomer conversion remaining constant after the ATRP phase. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Stress corrosion cracking susceptibility was investigated for an ultra-fine grained (UFG) AI-7.5Mg alloy and a conventional 5083 H111 alloy in natural seawater using slow strain rate testing (SSRT) at very slow strain rates between 1E(-5) s(-1), 1E(-6) s(-1) and 1E(-7) s(-1). The UFG Al-7.5Mg alloy was produced by cryomilling, while the 5083 H111 alloy is considered as a wrought manufactured product. The response of tensile properties to strain rate was analyzed and compared. Negative strain rate sensitivity was observed for both materials in terms of the elongation to failure. However, the UFG alloy displayed strain rate sensitivity in relation to strength while the conventional alloy was relatively strain rate insensitive. The mechanical behavior of the conventional 5083 alloy was attributed to dynamic strain aging (DSA) and delayed pit propagation while the performance of the UFG alloy was related to a diffusion-mediated stress relaxation mechanism that successfully delayed crack initiation events, counteracted by exfoliation and pitting which enhanced crack initiation. (C) 2014 Elsevier B.V. All rights reserved.