2 resultados para EEG, Tilt, Zero gravity, Weightlessness, Brain hemodynamics
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Evidence suggests that the social cognition deficits prevalent in autism spectrum disorders (ASDs) are widely distributed in first degree and extended relatives. This ¿broader autism phenotype¿ (BAP) can be extended into non-clinical populations and show wide distributions of social behaviors such as empathy and social responsiveness ¿ with ASDs exhibiting these behaviors on the lower ends of the distributions. Little evidence has previously shown relationships between self-report measures of social cognition and more objective tasks such as face perception in functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs). In this study, three specific hypotheses were addressed: a) increased social ability, as measured by an increased Empathy Quotient, decreased Social Responsiveness Scale (SRS-A) score, and increased Social Attribution Task score, will predict increased activation of the fusiform gyrus in response to faces as compared to houses; b) these same measures will predict N170 amplitude and latency showing decreased latency and increased amplitude for faces as compared to houses with increased social ability; c) increased amygdala volume will predict increased fusiform gyrus activation when viewing faces as compared to houses. Findings supported all of the hypotheses. Empathy scores significantly predicted both right FFG activation [F(1,20) = 4.811, p = .041, ß = .450, R2 = 0.20] and left FFG activation [F(1,20) = 7.70, p = .012, ß = .537, R2 = 0.29]. Based on ERP results increased right lateralization face-related N170 was significantly predicted by the EQ [F(1,54) = 6.94, p = .011, ß = .338, R2 = 0.11]. Finally, total amygdala volume significantly predicted right [F(1,20) = 7.217, p = .014, ß = .515, R2 = 0.27] and left [F(1,20) = 36.77, p < .001, ß = .805, R2 = 0.65] FFG activation. Consistent with the a priori hypotheses, traits attributed to the BAP can significantly predict neural responses to faces in a non-clinical population. This is consistent with the face processing deficits seen in ASDs. The findings presented here contribute to the extension of the BAP from unaffected relatives of individuals with ASDs to the general population. These findings also give continued evidence in support of a continuous distribution of traits found in psychiatric illnesses in place of a traditional, dichotomous ¿all-or-nothing¿ diagnostic framework of neurodevelopmental and neuropsychiatric disorders.
Resumo:
Brain functions, such as learning, orchestrating locomotion, memory recall, and processing information, all require glucose as a source of energy. During these functions, the glucose concentration decreases as the glucose is being consumed by brain cells. By measuring this drop in concentration, it is possible to determine which parts of the brain are used during specific functions and consequently, how much energy the brain requires to complete the function. One way to measure in vivo brain glucose levels is with a microdialysis probe. The drawback of this analytical procedure, as with many steadystate fluid flow systems, is that the probe fluid will not reach equilibrium with the brain fluid. Therefore, brain concentration is inferred by taking samples at multiple inlet glucose concentrations and finding a point of convergence. The goal of this thesis is to create a three-dimensional, time-dependent, finite element representation of the brainprobe system in COMSOL 4.2 that describes the diffusion and convection of glucose. Once validated with experimental results, this model can then be used to test parameters that experiments cannot access. When simulations were run using published values for physical constants (i.e. diffusivities, density and viscosity), the resulting glucose model concentrations were within the error of the experimental data. This verifies that the model is an accurate representation of the physical system. In addition to accurately describing the experimental brain-probe system, the model I created is able to show the validity of zero-net-flux for a given experiment. A useful discovery is that the slope of the zero-net-flux line is dependent on perfusate flow rate and diffusion coefficients, but it is independent of brain glucose concentrations. The model was simplified with the realization that the perfusate is at thermal equilibrium with the brain throughout the active region of the probe. This allowed for the assumption that all model parameters are temperature independent. The time to steady-state for the probe is approximately one minute. However, the signal degrades in the exit tubing due to Taylor dispersion, on the order of two minutes for two meters of tubing. Given an analytical instrument requiring a five μL aliquot, the smallest brain process measurable for this system is 13 minutes.