3 resultados para Dynamic stress change

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the challenges for structural engineers during design is considering how the structure will respond to crowd-induced dynamic loading. It has been shown that human occupants of a structure do not simply add mass to the system when considering the overall dynamic response of the system, but interact with it and may induce changes of the dynamic properties from those of the empty structure. This study presents an investigation into the human-structure interaction based on several crowd characteristics and their effect on the dynamic properties of an empty structure. The dynamic properties including frequency, damping, and mode shapes were estimated for a single test structure by means of experimental modal analysis techniques. The same techniques were utilized to estimate the dynamic properties when the test structure was occupied by a crowd with different combinations of size, posture, and distribution. The goal of this study is to isolate the occupant characteristics in order to determine the significance of each to be considered when designing new structures to avoid crowd serviceability issues. The results are presented and summarized based on the level of influence of each characteristic. The posture that produces the most significant effects based on the scope of this research is standing with bent knees with a maximum decrease in frequency of the first mode of the empty structure by 32 percent atthe highest mass ratio. The associated damping also increased 36 times the damping of the empty structure. In addition to the analysis of the experimental data, finite element models and a two degree-of-freedom model were created. These models were used to gain an understanding of the test structure, model a crowd as an equivalent mass, and also to develop a single degree-of-freedom (SDOF) model to best represent a crowd of occupants based on the experimental results. The SDOF models created had an averagefrequency of 5.0 Hz, within the range presented in existing biomechanics research, and combined SDOF systems of the test structure and crowd were able to reproduce the frequency and damping ratios associated with experimental tests. Results of this study confirmed the existence of human-structure interaction andthe inability to simply model a crowd as only additional mass. The two degree-offreedom model determined was able to predict the change in natural frequency and damping ratio for a structure occupied by multiple group sizes in a single posture. These results and model are the preliminary steps in the development of an appropriate methodfor modeling a crowd in combination with a more complex FE model of the empty structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal coloration often serves as a signal to others that may communicate traits about the individual such as toxicity, status, or quality. Colorful ornaments in many animals are often honest signals of quality assessed by mates, and different colors may beproduced by different biochemical pigments. Investigations of the mechanisms responsible for variation in color expression among birds are best when including a geographically and temporally broad sample. In order to obtain such a sample, studies such as this often use museum specimens; however, in order for museum specimens toserve as an accurate replacement, they must accurately represent living birds, or we must understand the ways in which they differ. In this thesis, I investigated the link between feather corticosterone, a hormone secreted in response to stress, and carotenoid-basedcoloration in the Red-winged Blackbird (Agelaius phoeniceus) in order to explore a mechanistic link between physiological state and color expression. Male Red-winged Blackbirds with lower feather corticosterone had significantly brighter red epaulets than birds with higher feather corticosterone, while I found no significant changes in red chroma. I also performed a methodological comparison of color change in museum specimens among different pigment types (carotenoid and psittacofulvin) and pigments in different locations in the body (feather and bill carotenoids) in order to quantify colorchange over time. Carotenoids and psittacofulvins showed significant reductions in red brightness and chroma over time in the collection, and carotenoid color changed significantly faster than psittacofulvin color. Both bill and feather carotenoids showed significant reductions in red brightness and red chroma over time, but change of both red chroma and red brightness occurred at a similar rate in feathers and bills. In order to use museum specimens of ecological research on bird coloration specimen age must be accounted for before the data can be used; however, once this is accomplished, museum- based color data may be used to draw conclusions about wild populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress corrosion cracking susceptibility was investigated for an ultra-fine grained (UFG) AI-7.5Mg alloy and a conventional 5083 H111 alloy in natural seawater using slow strain rate testing (SSRT) at very slow strain rates between 1E(-5) s(-1), 1E(-6) s(-1) and 1E(-7) s(-1). The UFG Al-7.5Mg alloy was produced by cryomilling, while the 5083 H111 alloy is considered as a wrought manufactured product. The response of tensile properties to strain rate was analyzed and compared. Negative strain rate sensitivity was observed for both materials in terms of the elongation to failure. However, the UFG alloy displayed strain rate sensitivity in relation to strength while the conventional alloy was relatively strain rate insensitive. The mechanical behavior of the conventional 5083 alloy was attributed to dynamic strain aging (DSA) and delayed pit propagation while the performance of the UFG alloy was related to a diffusion-mediated stress relaxation mechanism that successfully delayed crack initiation events, counteracted by exfoliation and pitting which enhanced crack initiation. (C) 2014 Elsevier B.V. All rights reserved.