1 resultado para Distributed Lag Non-linear Models
em Bucknell University Digital Commons - Pensilvania - USA
Filtro por publicador
- JISC Information Environment Repository (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (50)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (15)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Boston University Digital Common (8)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (97)
- CentAUR: Central Archive University of Reading - UK (58)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- Cochin University of Science & Technology (CUSAT), India (8)
- Collection Of Biostatistics Research Archive (7)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- Digital Commons at Florida International University (5)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- eScholarship Repository - University of California (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (11)
- Helda - Digital Repository of University of Helsinki (9)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (123)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (7)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (4)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (46)
- Queensland University of Technology - ePrints Archive (157)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (71)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (5)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (26)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (5)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (2)
- University of Michigan (9)
- University of Queensland eSpace - Australia (13)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
Cold-formed steel (CFS) combined with wood sheathing, such as oriented strand board (OSB), forms shear walls that can provide lateral resistance to seismic forces. The ability to accurately predict building deformations in damaged states under seismic excitations is a must for modern performance-based seismic design. However, few static or dynamic tests have been conducted on the non-linear behavior of CFS shear walls. Thus, the purpose of this research work is to provide and demonstrate a fastener-based computational model of CFS wall models that incorporates essential nonlinearities that may eventually lead to improvement of the current seismic design requirements. The approach is based on the understanding that complex interaction of the fasteners with the sheathing is an important factor in the non-linear behavior of the shear wall. The computational model consists of beam-column elements for the CFS framing and a rigid diaphragm for the sheathing. The framing and sheathing are connected with non-linear zero-length fastener elements to capture the OSB sheathing damage surrounding the fastener area. Employing computational programs such as OpenSees and MATLAB, 4 ft. x 9 ft., 8 ft. x 9 ft. and 12 ft. x 9 ft. shear wall models are created, and monotonic lateral forces are applied to the computer models. The output data are then compared and analyzed with the available results of physical testing. The results indicate that the OpenSees model can accurately capture the initial stiffness, strength and non-linear behavior of the shear walls.