3 resultados para Dimensional analysis.
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Dimensional modeling, GT-Power in particular, has been used for two related purposes-to quantify and understand the inaccuracies of transient engine flow estimates that cause transient smoke spikes and to improve empirical models of opacity or particulate matter used for engine calibration. It has been proposed by dimensional modeling that exhaust gas recirculation flow rate was significantly underestimated and volumetric efficiency was overestimated by the electronic control module during the turbocharger lag period of an electronically controlled heavy duty diesel engine. Factoring in cylinder-to-cylinder variation, it has been shown that the electronic control module estimated fuel-Oxygen ratio was lower than actual by up to 35% during the turbocharger lag period but within 2% of actual elsewhere, thus hindering fuel-Oxygen ratio limit-based smoke control. The dimensional modeling of transient flow was enabled with a new method of simulating transient data in which the manifold pressures and exhaust gas recirculation system flow resistance, characterized as a function of exhaust gas recirculation valve position at each measured transient data point, were replicated by quasi-static or transient simulation to predict engine flows. Dimensional modeling was also used to transform the engine operating parameter model input space to a more fundamental lower dimensional space so that a nearest neighbor approach could be used to predict smoke emissions. This new approach, intended for engine calibration and control modeling, was termed the "nonparametric reduced dimensionality" approach. It was used to predict federal test procedure cumulative particulate matter within 7% of measured value, based solely on steady-state training data. Very little correlation between the model inputs in the transformed space was observed as compared to the engine operating parameter space. This more uniform, smaller, shrunken model input space might explain how the nonparametric reduced dimensionality approach model could successfully predict federal test procedure emissions when roughly 40% of all transient points were classified as outliers as per the steady-state training data.
Resumo:
Despite the fact that photographic stimuli are used across experimental contexts with both human and nonhuman subjects, the nature of individuals' perceptions of these stimuli is still not well understood. In the present experiments, we tested whether three orangutans and 36 human children could use photographic information presented on a computer screen to solve a perceptually corresponding problem in the physical domain. Furthermore, we tested the cues that aided in this process by pitting featural information against spatial position in a series of probe trials. We found that many of the children and one orangutan were successfully able to use the information cross-dimensionally; however, the other two orangutans and almost a quarter of the children failed to acquire the task. Species differences emerged with respect to ease of task acquisition. More striking, however, were the differences in cues that participants used to solve the task: Whereas the orangutan used a spatial strategy, the majority of children used a feature one. Possible reasons for these differences are discussed from both evolutionary and developmental perspectives. The novel results found here underscore the need for further testing in this area to design appropriate experimental paradigms in future comparative research settings.
Measurement Properties of the Short Multi-Dimensional Observation Scale for Elderly Subjects (MOSES)
Resumo:
This study evaluated the five-factor measurement model of the abbreviated Multidimensional Observation Scale for Elderly Subjects (MOSES), originally proposed by Pruchno, Kleban, and Resch in 1988. Modifications of the five-factor model were examined and evaluated with regard to their practical significance. A confirmatory second-order factor analysis was performed to examine whether the correlations among the first-order factors were adequately accounted for by a global dysfunction factor. Findings indicated that the proposed measurement model was replicated adequately. Although post hoc modifications resulted in significant improvements in overall model fit, the minor parameters had only a trivial influence on the major parameters of the baseline model. Results from the second-order factor analysis showed that a global dysfunc tion factor accounted adequately for the intercorrelations among the first-order factors.