5 resultados para Digital image processing
em Bucknell University Digital Commons - Pensilvania - USA
Digital signal processing and digital system design using discrete cosine transform [student course]
Resumo:
The discrete cosine transform (DCT) is an important functional block for image processing applications. The implementation of a DCT has been viewed as a specialized research task. We apply a micro-architecture based methodology to the hardware implementation of an efficient DCT algorithm in a digital design course. Several circuit optimization and design space exploration techniques at the register-transfer and logic levels are introduced in class for generating the final design. The students not only learn how the algorithm can be implemented, but also receive insights about how other signal processing algorithms can be translated into a hardware implementation. Since signal processing has very broad applications, the study and implementation of an extensively used signal processing algorithm in a digital design course significantly enhances the learning experience in both digital signal processing and digital design areas for the students.
Resumo:
The performance of the parallel vector implementation of the one- and two-dimensional orthogonal transforms is evaluated. The orthogonal transforms are computed using actual or modified fast Fourier transform (FFT) kernels. The factors considered in comparing the speed-up of these vectorized digital signal processing algorithms are discussed and it is shown that the traditional way of comparing th execution speed of digital signal processing algorithms by the ratios of the number of multiplications and additions is no longer effective for vector implementation; the structure of the algorithm must also be considered as a factor when comparing the execution speed of vectorized digital signal processing algorithms. Simulation results on the Cray X/MP with the following orthogonal transforms are presented: discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh transform (DWHT), and discrete Hadamard transform (DHDT). A comparison between the DHT and the fast Hartley transform is also included.(34 refs)
Resumo:
We describe a recent offering of a linear systems and signal processing course for third-year electrical and computer engineering students. This course is a pre-requisite for our first digital signal processing course. Students have traditionally viewed linear systems courses as mathematical and extremely difficult. Without compromising the rigor of the required concepts, we strived to make the course fun, with application-based hands-on laboratory projects. These projects can be modified easily to meet specific instructors' preferences. © 2011 IEEE.(17 refs)
Resumo:
We introduce a new discrete polynomial transform constructed from the rows of Pascal’s triangle. The forward and inverse transforms are computed the same way in both the oneand two-dimensional cases, and the transform matrix can be factored into binary matrices for efficient hardware implementation. We conclude by discussing applications of the transform in